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Abstract. One of the primary goals of watershed management is to proactively monitor and forecast
flood water levels to provide early warning for timely evacuation plans and save lives. One of the
most economical ways to accomplish this objective is to use remotely-sensed satellite signals. Previous
studies have indicated that an Advanced Microwave Scanning Radiometer (AMSR) sensor can be used
for river water level monitoring combined with a few in-situ hydrometric gauges for the ground-truth
data collection. However, space-based signals are influnced by many error-inducing natural factors,
such as dust and cloud cover. Hence, a hybrid method is proposed, which comprises of a multi-
objective particle swarm optimization model, a decision tree classification algorithm, the Hotelling’s
T 2 outlier detection, and a regression model to identify and replace inaccurate space-based signals.
This complex hybrid method will be referred to, in this study, with the acronym (OCOR). In the first
phase of this hybrid method, the outlier signals are detected and eliminated from the dataset, and in
the second phase, the eliminated signals along with signals lost due to satellite technical problems are
estimated by ground-truth data calibration using in situ hydrometric stations. The two case studies of
the White and Willamette Rivers demonstrate the performance of OCOR in practical situations.
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1. Introduction

Despite the fact that climate change has increased
the severity and frequency of floods and that floods
have killed more people than all other natural dis-
asters combined [De Groeve and Riva, 2009a], more
studies are required to provide cost-effective early
warning systems for timely evacuation plans in op-
erational context [Zaji et al., 2018]. Recent stud-
ies have successfully employed artificial intelligence
models for solving nonlinear water resources prob-
lems [Akhbari et al., 2017, Bonakdari et al., 2020,
Ebtehaj et al., 2018, 2019, Espinoza-Villar et al., 2018,
Gholami et al., 2019, Sattar et al., 2019, Zaji and
Bonakdari, 2019].

He et al. [2014] compared the performance of
three of the most popular data-driven techniques,
i.e., Artificial Neural Networks (ANN), Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), and Sup-
port Vector Machines (SVM) in predicting river flow.
The authors concluded that the SVM method per-
formed better in simulating rivers in a semi-arid
mountain region in China. Chen et al. [2015] ap-
plied a Hybrid Neural Network (HNN) based on
fuzzy pattern recognition to simulate the Altamaha
River. The authors compared three different opti-
mization algorithms to determine the most appro-
priate HNN parameters and concluded that Differ-
ential Evolution (DE) and Ant Colony Optimization
(ACO) outperformed the Artificial Bee Colony (ABC)
algorithm.

Darras et al. [2017] employed feedforward and re-
current neural networks to forecast flash floods. The
authors determined that the recurrent neural net-
work performed better with longer lead time in flash
flood prediction and the feedforward neural network
performed better in simulating flash floods in short-
range forecasting. Yaseen et al. [2017] combined the
firefly algorithm with an adaptive neuro-fuzzy com-
puting technique to propose a novel model for esti-
mating of the stream flow. Young et al. [2017] intro-
duced a hybrid model formed of a physically-based
hydrologic modeling system and SVM and stated that
this model showed good performance in simulating
rainfall-runoff during typhoon events.

Alizadeh et al. [2017] combined the wavelet trans-
form with ANN in order to predict rainfall-runoff in
the Tolt River. The results showed that this model
made appropriate forecasts for one and two months

ahead. Zeynoddin et al. [2018] proposed a novel hy-
brid model to forecast rainfall of a basin with a trop-
ical climate in Malaysia. One of the primary goals of
using satellite information is to monitor and forecast
the floods in ungauged basins.

The problem with river flood forecasting is that
all data-driven models only use in situ information.
Hence, because of the direct relation of flood data
to the in-situ gauges, regions with no measuring sta-
tions cannot provide any information about the river.
Nonetheless, the majority of rivers suffer from a lack
of in situ stations.

In addition, the number of existing in situ stations
in some countries are limited [Calmant and Seyler,
2006, Khan et al., 2012, Shiklomanov et al., 2002, Siva-
palan, 2003, Stokstad, 1999]. Hence, studying and
forecasting floods is not possible on considerable re-
gions of the earth. Therefore, Predicting in Ungauged
Basins (PUB) has recently emerged as a topic of very
high interest in flood forecasting [Salvia et al., 2011].
Researchers in this field mainly use satellite infor-
mation such as space-based precipitation measure-
ments to simulate hydrological circumstances [Brak-
enridge et al., 2007, Jiang et al., 2014, Khan et al., 2011,
Su et al., 2008, Temimi et al., 2011, 2007].

An accurate means of simulating river flow ap-
plying satellite information is to utilize passive mi-
crowave sensors from the AMSR for Earth Observ-
ing System (AMSR-E) [Brakenridge et al., 2007]. Stud-
ies in this field began at the Dartmouth Flood Ob-
servatory (DFO), followed by the Joint Research Cen-
tre (JRC). AMSR-E sensors observe all of the Earth’s
surface and detect wet river areas by calculating
the differences in land and water brightness tem-
peratures. Raw data is justified by the Global Flood
Detection System (GFDS), which is accessible at
http://www.gdacs.org.

To predict the rivers water level time series using
satellite data, Zaji et al. [2019a] introduced a new ap-
proach of minimizing both horizontal and vertical er-
rors. After that, Zaji et al. [2019b] developed a new
Evolutionary Polynomial Regression-Time series pre-
dictor (EPR-T) and used it to predict the rivers dis-
charge using satellite information. Bonakdari et al.
[2019] developed two extensions of the Markov Chain
(MC) method, namely Online-Markov Chain (O-MC)
and Extreme Online-Markov Chain (EO-MC) to en-
hance the forecasting performance of rivers dis-
charge using satellite information.
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The signals received by satellites are affected by a
range of weather conditions [Kugler and De Groeve,
2007]. For instance, severe weather alters the emis-
sion signals of both land and water. The impact
of severe weather is more critical when the water-
surrounded area is smaller, which is why space-based
signal accuracy is poorer when river discharge is low
[Khan et al., 2012]. So, in order to improve the per-
formance and reliability of satellite data, Zaji et al.
[2019a] proposed an approach based on trial and
error, classification, and outlier detection methods.
The authors concluded that the developed method
could significantly increase the accuracy of satellite
data.

The primary goal of the present study is to in-
troduce a hybrid method that comprises of a multi-
objective particle swarm Optimization model, de-
cision tree Classification algorithm, Hotelling’s T 2

Outlier detection, and a Regression model (OCOR)
for evaluating raw satellite signals to obtain accu-
rate continuous signals. With this method, outlier
signals received through severe weather or other
unknown environmental situations are initially de-
tected and eliminated. Then the removed signals and
those missed due to technical satellite problems are
predicted using a regression method.

Previous studies have mainly focused on simulat-
ing river discharge using space-based signals [Fras-
son et al., 2017]. However, when the goal is to use his-
torical information of satellite sensors to forecast the
future river discharge, a gap-free continuous space-
based dataset is needed [Weigend, 2018]. Thus, the
second step entails evaluating a continuous dataset
of space-based signals with no missed samples. In
the training phase of the OCOR method, the in-situ
measurements are needed in order to determine one
of the objective functions of the multi-objective op-
timization algorithm and to develop the regression
method to replace the detected noisy samples.

2. Space-based signals

AMSR-E and AMSR2 passive microwave sensors are
employed in the present study to gather space-based
signals [Brakenridge et al., 2007]. After that, the ob-
tained signals are used to measure the river discharge
indirectly. In order to obtain more stable observa-
tions, the descending orbit method was selected in
this study [Kugler and De Groeve, 2007, Tekeli and

Fouli, 2017], and the Earth’s surface was measured at
least once a day.

Microwave measurements, which are very sensi-
tive to water, are widely used in the soil moisture esti-
mation field of science [Njoku et al., 2003, Schmugge,
1980, Srivastava, 2017, Theis et al., 1982, Ulaby et al.,
1978, Wang et al., 1982]. By using the microwave sig-
nals, river discharge is estimated according to the dif-
ferences between the thermal emission of dry and
wet surfaces. The brightness temperature of the con-
sidered wet area is called Measurement (M), which is
a proxy of river water and the received information is
calibrated applying the surrounding dry area’s bright-
ness temperature (C) to obtain the final AMSR space-
based Signal (S) as follows:

S = C

M
. (1)

Land brightness temperature is higher than wet area
temperature [Kugler and De Groeve, 2007], such that
S is low when river discharge is low and vice versa
[Birkinshaw et al., 2010].

According to Bjerklie et al. [2004] and Brakenridge
et al. [2012], in most rivers, the discharge has a bet-
ter correlation with flow width than with the flow ve-
locity. So that, flow width, which is calculated by us-
ing the satellite information, could be considered as
a robust proxy of river discharge.

3. Study area

In this work, two rivers are examined as case stud-
ies, namely the White River and the Willamette River.
The properties of these two rivers are presented in Ta-
ble 1. Both are located in the United States. The White
and Willamette River sources are the Boston Moun-
tains and the junction of the Middle Fork Willamette
River with the Coast Fork Willamette River, respec-
tively. Figure 1 presents a schematic overview of the
in-situ stations and space-based measurement loca-
tions for the White and Willamette Rivers. In this fig-
ure, area M, area C, and the in-situ measurement sta-
tion are denoted by blue, gray, and black, respectively.

The in-situ station information was col-
lected from the United States Geological Survey
(USGS) (http://www.usgs.gov), and the space-
based information was obtained from GFDS
(http://www.gdacs.org). The time periods exam-
ined for the White and Willamette Rivers are from
2009 to 2011 and from 2002 to 2016, respectively.
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Figure 1. Schematic overview of the (a) White River and (b) Willamette River locations (Landsat satellite
images in false color Composite (7,5,2)).

Table 1. White and Willamette River properties

River name Site ID Station ID Space based site
coordinates

Lat./Long. (dd)

In situ station
coordinates

Lat./Long. (dd)

Mean
discharge

(m3/s)
White, Newberry 524 03360500 38.91/−87.07 38.92/−87.011 12137

Willamette 925 14191000 45.18/−123.01 44.94/−123.042 18928

4. Numerical models

The primary goal of the method proposed in current
study is to re-evaluate the in situ and space-based
datasets by detecting and replacing their errors. As
mentioned in the literature, many studies have ad-
dressed calibrating space-based information within
situ measurements. However, the poor performance
of satellite sensors, in some cases, can lead to inaccu-
rate signals. In addition, satellite or in situ gauges are
not always accessible. However, forecasting river dis-
charge using space-based data necessitates a dataset
with no gaps, whereby the technique should replace
eliminated and missed data with appropriate values.

The OCOR method is introduced in this study
to more efficiently (compred to exisiting methods)
achieve these goals. The OCOR method involves an
outlier detection approach combined with a classi-
fication algorithm to detect outliers and inaccurate

signals. The OCOR subsequently employs a regres-
sion model to evaluate the eliminated and missed in-
formation. In addition, the model is justified employ-
ing a multi-objective optimization algorithm.

Outlier detection is the science of detecting the
abnormal samples by considering the amounts of
other samples of the dataset [Mitra, 2009]. An out-
lier detection model tries to identify the Global and
Contextual outliers of space-based signals. Global
outliers occur when a sample deviates significantly
from the whole dataset, and Contextual outliers oc-
cur when a sample deviates significantly from nearby
samples in that season [Han et al., 2011].

Hotelling’s T 2 outlier detection method
[Hotelling, 1992] is used in the present study.
Hotelling’s T 2 has been applied as a quality checking
algorithm in many studies [Mason and Young, 2002,
Shabbak et al., 2011, Sullivan and Woodall, 1996]. In
Hotelling’s T 2, the entire dataset is transferred to a
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hypersphere with radiusα by using rotation and nor-
malization. Following the mentioned transforma-
tions, the samples that satisfy the condition T 2 ≤ α2

are deemed normal, and the remaining samples are
considered abnormal. Hence, α is a strict criterion of
this method.

In the present study, supervised outlier detection
is utilized, which, together with Hotelling’s T 2 out-
lier detection, necessitates a classification algorithm
[Han et al., 2011]. In supervised outlier detection,
the classification algorithm labels the samples as ex-
perts, after samples which samples that enlarge the
classes are detected as outliers and eliminated from
the dataset.

The OCOR method employs the decision tree al-
gorithm, as it is one of the simplest and fastest clas-
sification algorithms [Quinlan, 1986, 1987, Quinlan
and Rivest, 1989]. This algorithm has a tree-like shape
and comprises three parts. The first part entails inter-
nal nodes that make decisions on the attributes; the
second part contains branches that represent the de-
cisions made in the internal nodes; and the third part,
or the final level of tree nodes, includes leaf nodes
that present the class labels. The decision tree em-
ployed was introduced by Breiman et al. [1984] as the
CART algorithm for measuring training dataset im-
purity as follows:

G I (dataset) = 1−
m∑

i=1
p2

i where pi =
|Ci ,dataset|
|dataset| (2)

where Ci represents the class label pi is the proba-
bility that the sample considered is in class Ci , and
m is the number of classes considered. GI leads to a
binary decision in each internal node. The precision
of the decision tree classification algorithm is justi-
fied using the Minimum Parent Size (MPS) parame-
ter. MPS determines the minimum number of sam-
ples allowed in each node and serves as a termina-
tion criterion. Lower MPS leads to a larger, more ac-
curate decision tree and vice versa.

Parameters α (strict Hotelling’s T 2 criterion), m
(number of classes), and MPS (decision tree termi-
nation criterion) should be determined to attain an
optimum model. The optimum position is a model
with the lowest number of outlier samples and the
highest coefficient of determination (R2) between
the satellite signals and in situ discharge measure-
ments. Hence, two goals must be attained, and a
multi-objective optimization algorithm is needed.

In the present study, Multi-Objective Particle
Swarm Optimization (MOPSO) [Coello and Lechuga,
2002] is used. MOPSO is a combination of Particle
Swarm Optimization (PSO) [Kennedy et al., 2001,
Shaghaghi et al., 2017, Zaji et al., 2015] and the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II)
[Deb et al., 2000]. The goal of MOPSO is to determine
the most suitable α, m, and MPS values to attain
a model that detects the lowest number of outliers
with the highest R2.

The final step of the OCOR method is the re-
gression procedure. Here, the satellite-based samples
that were eliminated in previous steps are replaced
with accurate values. This procedure involves in situ
discharge measurements as input samples to the re-
gression model and satellite-based signals as the out-
put samples. Following the elimination, the regres-
sion model is trained using the remaining samples,
after which it models the eliminated samples.

The OCOR method tries to detect and eliminate as
few inaccurate and noisy samples as possible by us-
ing a combination of outlier detection, classification,
and multi-objective optimization algorithms and af-
ter that, replace the eliminated samples using a re-
gression method.

Applying this model before using satellite rivers
information is necessary for any further applica-
tion of them. However, this version of the proposed
method has some limitations. Firstly, in this method,
the in-situ discharge measurements are used in order
to find the highest R2, which is one of the objectives
of the optimization algorithm and also for replacing
the eliminated samples, which is the last phase of
OCOR method.

Therefore, this method is not applicable to un-
gauged basins. Secondly, this model has only been
tested on the AMSR satellite sensors’ information.
The footprint size of AMSR is really big (about 8 ×
12 km2). The information obtained by this sensor are
more suitable for large rivers. Thirdly, in order to use
the proposed preprocessing method on other satel-
lite sensors, some justifications should be done to
this model. For instance, despite having a high res-
olution of MODerate resolution Imaging Spectrora-
diometer (MODIS), the gathered information is more
sensitive to the cloudy weather condition, and those
images should be eliminated from the dataset sepa-
rately.

C. R. Géoscience, 2020, 352, n 1, 73-86
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5. Results and discussion

As mentioned earlier, one of the optimal alternatives
to river discharge measurement is satellite informa-
tion. For the satellite signals to be usable, they must
undergo a preprocessing phase. The OCOR method
entails two phases: preprocessing and calibration.
Satellite signals have two major drawbacks. The first
is inaccuracy due to poor environmental conditions,
and the second is missed signals on account of inac-
cessibility to the satellite.

Figure 2 presents the in-situ discharge measure-
ments and satellite signals for the two rivers con-
sidered. This figure indicates a good correlation be-
tween the satellite signals and in situ discharge
measurements. However, it is evident that many time
periods have no information and there are missed
samples. For the White River, besides missed satel-
lite signals, there is a period of time for which in situ
measurements were lost.

According to the study area section, in the present
study, three years of daily information was used for
the White River, and 15 years of daily information was
used for the Willamette River. It should be noted that
selecting the most appropriated time period for each
case study should be done according to the complex-
ity of the considered problem. For instance, accord-
ing to Figure 2, for the Willamette River, the satel-
lite signals were missed for a long period of time
(the black areas). In this case, longer periods of in-
situ measurements and satellite signals are needed to
evaluate a reliable model.

On the other hand, selecting a longer period of
time leads to having more computational time as
well, in this case, by using a MacBook Pro with
3.1 GHz Intel Core i7 CPU and 16 GB Memory, the
running time of Willamette River model takes about
10 h. However, with the same computer, the running
time of the White River model takes about 2 h.

One of the most critical objectives of studies on
river discharge is forecasting. Forecasting river dis-
charge via any method requires a continuous dataset
with no missed samples. The goal of the preprocess-
ing phase in the OCOR method is to identify in-
accurate satellite signals and eliminate them from
the dataset. The purpose of the calibration phase
in the OCOR method is to re-evaluate the excluded
outliers and missed signals in order to obtain a
continuous and accurate dataset for use as time

series in river discharge forecasting using satellite
information.

An optimum outlier detection model will attain
maximum R2 with the least number of eliminated
outliers. Hence, there are two aims, and this prob-
lem cannot be solved using simple optimization al-
gorithms. In the present study, MOPSO was utilized
to adjust three parameters, i.e., MPS, α, and m, to at-
tain the best model. In the present model, MPS var-
ied from 1 to 500, while α and m varied from 1 to
10. Each case study underwent 100 iterations and the
population number considered was 300. With multi-
objective optimization methods, the best model is se-
lected by using the concept of domination. According
to the definition, j = [Goal1 j , . . . ,Goaln j ] dominates
i = [Goal1i , . . . ,Goalni ] if all parameters of j are less
than or equal to the parameters of i and none of the
parameters of j are less than those of i.

In the MOPSO procedure, the non-dominated
samples are saved in a repository. The present model
repository can save 100 non-dominated samples.
Upon reaching this number of samples, the best
model is selected manually. Figure 3 illustrates the
repository samples for the White and Willamette
Rivers as red circles. In this figure, the best models are
denoted by blue diamonds. These models evidently
represent a good balance between high R2 and a low
number of eliminated samples.

The most suitable model of the White River had
MPS of 3, α of 1.49, and m of 9, while the best model
of the Willamette River had MPS of 4, α of 2.18,
and m of 10. All samples for these models and the
eliminated samples are shown in Figure 4, where the
classes are shown in different colors. Moreover, Fig-
ure 4 indicates that these datasets were not classified
accurately. However, the goal of the present study was
not accurate classification, but rather to determine
the best outlier samples that increase the R2 of the
satellite signals and in situ discharge measurements.

Thus far, a combination of multi-objective opti-
mization, classification, and outlier selection meth-
ods were applied to detect and eliminate inaccurate
signals from the dataset. The dataset additionally had
gaps due to technical satellite problems. In order to
fill these gaps, the second OCOR phase done was cal-
ibration. In this phase, the missed and outlier sig-
nals were evaluated using in situ discharge measure-
ments, which served as nonlinear regression model
inputs while the satellite signals were the targets.

C. R. Géoscience, 2020, 352, n 1, 73-86
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Figure 2. Satellite signals and in situ discharge measurements for the (a) White River and (b) Willamette
River.

Following regression model training, the missed and
eliminated signals were modeled. The calibration
regression equations for the White and Willamette
Rivers are given by (3) and (4), respectively, where S
represents satellite signal values, and Q denotes in
situ discharge measurements.

S = 4.63e−16 ×Q3 −6.16e−11 ×Q2

+3.79e−6 ×Q +1.014 (3)

S = 6.52e−18 ×Q3 −6.86e−12 ×Q2

+1.15e−6 ×Q +1.017 (4)

Values missed because of technical satellite prob-
lems are not specified. In situ gauges are also some-
times inaccessible, and the in-situ discharge mea-
surement dataset has lost samples too. In such cases,
a regression model can be employed to model in situ
discharge measurements using satellite signals.

The signals evaluated for the two case studies are
shown in Figure 5. Here, the red points are outlier sig-
nals eliminated from the dataset in the OCOR prepro-

cessing phase and replaced in the calibration phase
using (3) and (4). The blue points represent satellite
signals missed because of technical problems. From
this figure, it is evident that the Willamette River has
lost signals for a long period of time.

These lost samples were re-evaluated by using
the mentioned regression equations. The pink points
in the figure for the White River dataset represent
sample inputs replacing in situ measurement val-
ues missed due to technical gauge problems. For
the White and Willamette Rivers, the R2 amounts
between the initial satellite signals and in-situ dis-
charges are 0.57 and 0.39, respectively, and the R2

amounts between the developed satellite signals and
in-situ discharges are 0.86 and 0.7, respectively. So,
using the OCOR method increases the performance
of the satellite signals significantly. In addition, in the
initial dataset, there are some gaps in the satellite sig-
nals and in-situ measurements, which are replaced in
the final datasets.

C. R. Géoscience, 2020, 352, n 1, 73-86
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Figure 3. Repository samples for the (a) White
River and (b) Willamette River.

After calibration, the OCOR method has attained
the objectives. First, inaccurate satellite signals were
detected and eliminated. Second, the missed and
excluded signals were re-evaluated using regression
models. According to Figure 6, subsequent to these
two phases, the satellite signals exhibited an excel-
lent correlation with the in-situ discharge measure-
ments; hence, this dataset can be used as a time se-
ries to forecast future river discharge.

Finally, the OCOR method is used to distinguish
between the normal water level of rivers and the
flood water levels. In this theory, which was used

Figure 4. Classification and outlier samples of
the (a) White River and (b) Willamette River.

in the field of satellite-based flood detection by
De Groeve and Riva [2009b], the Flood Magnitude
(FM) is defined using the following equation:

FM = S −S

σ(S)
(5)

where S is the satellite signals as presented in (1), and
σ(S) is the standard deviation of the S dataset, which

C. R. Géoscience, 2020, 352, n 1, 73-86
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Figure 5. The final dataset of satellite-based signals for the (a) White River and (b) Willamette River.

is defined as follow:

σ=
√√√√ 1

N −1

N∑
i=1

(Si −S)2 (6)

where N is the number of S dataset’s samples and S
represents the average value of S. A normal distribu-
tion, when the average value of the dataset is zero,
and its standard deviation is one the distribution is
defined as follows:

ϕ(x) = 1p
2π

e−
1
2 x2

(7)

where x represents a sample of the S dataset. The his-
tograms of the FM datasets for the Willamette and

White Rivers are presented in Figure 7. In this fig-
ure, the normal distribution was obtained using (7)
is shown by a red line and the real distributions of the
FM datasets are shown by blue bins. De Groeve and
Riva [2009b] and the GFDS organization proposed
that considering FM samples with a standard devi-
ation between two and four (2 < σ < 4) as small and
regular floods and FM samples with a standard devi-
ation higher than 4 (σ≥ 4) as extreme floods.

6. Conclusion

One of the most worthwhile aims of flood disas-
ter management is to provide real-time flood wa-
ter level forecasting for early warning evacuation

C. R. Géoscience, 2020, 352, n 1, 73-86
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Figure 6. Simulations of in situ discharge from the (a) White River and (b) Willamette River using satellite
signals.

plans to save lives. Various studies have been re-
cently conducted in this field of science. Satellite-
based signals are becoming more readily available
and cost-effective method to monitor a vast network
of rivers during major storm events. In this study, a
novel method is proposed to improve the accuracy
of satellite-based water level forecasts, comprising a
multi-objective particle swarm Optimization model,
decision tree Classification algorithm, Hotelling’s T 2

Outlier detection, and a Regression model (OCOR).

The new OCOR method can effectively identify inac-
curate satellite signals and replace them with reason-
able values.

Two case studies were selected to showcase the
novel application of the new OCOR method, includ-
ing the White River and the Willamette River, located
in the United States. In total, 307 White River sam-
ples and 1008 Willamette River samples were identi-
fied as outliers or missing data due to satellite tech-
nical problems. Upon eliminating these samples, the
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Figure 7. Histograms of the Willamette and White Rivers’ FM datasets.

satellite-based signals were successfully calibrated
with the in situ hydrometric gauge data, and the
deleted signals were gap-filled using the calibrated
regression model. Hence, all dataset gaps were filled
with satisfactory values. The final results demon-
strate a superior correlation between in situ mea-
surements and satellite-based signals following the
OCOR model application and can be used as a cost-
effective method for tracking water levels in vast river
networks during major flood events for early warning
evacuation plans to save lives.
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