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Abstract. Let G be a Lorentzian Lie group or a pseudo-Riemannian Lie group of type (n −2,2). If G admits a
non-Killing left-invariant conformal vector field, then G is solvable.

Résumé. Soit G un groupe de Lie lorentzien ou un groupe de Lie pseudo-riemannien de type (n −2,2). Si G
admet un champ vectoriel invariant à gauche non-Killing, alors G est résoluble.
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1. Introduction

Let (M , g ) be a pseudo-Riemannian manifold. The conformal transformation group of (M , g ),
denoted by Conf(M , g ), is called essential if no metric in the conformal class of g is preserved
by Conf(M , g ). If (M , g ) is Riemannian of dimension ≥ 2, then Conf(M , g ) is essential if and only
if (M , g ) is conformally diffeomorphic to the standard sphere Sn or Rn with the canonical flat
metric. This is the famous Lichnérowicz’s Conjecture, which was finally proved by J. Ferrand in [7].
However, in the pseudo-Riemannian case, the situation is quite different as shown in [1,8,11,14].
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Thus it is meaningful to study the structure of a pseudo-Riemannian manifold (M , g ) with
Conf(M , g ) essential, for example a homogeneous pseudo-Riemannian manifold with a non-
Killing conformal vector field. Here a vector field X on (M , g ) is said to be conformal, if

LX g = 2ρg , (1)

where LX is the Lie derivation and ρ is a smooth function on M called the conformal factor
with respect to g . If g is a Riemannian metric, the existence of the function ρ might give
some information about the topological structure of the Riemannian manifold (see [5, 12]). As
a subclass of conformal vector fields, a Yamabe soliton vector field, i.e. a vector field X satisfies
LX g = 2(scal−λ)g where scal is the scalar curvature of the metric g and λ is a constant, plays an
important role in exploring Yamabe flow (see [2–4, 6, 9]). If ρ = 0, we call X a Killing vector field
which provides a close link between the geometry of a manifold M and the algebra of I (M), where
I (M) denotes the set of all isometries in (M , g ) (see [13]).

Here we restrict (M , g ) to be a pseudo-Riemannian Lie group which is a Lie group with a left-
invariant pseudo-Riemannian metric. All Lie groups are assumed to be connected. Furthermore
the Lie group is called type (p, q) if the signature of the pseudo-Riemannian metric is of (p, q).
As we know, there are some studies on Lorentzian Lie groups with non-Killing left-invariant
conformal vector fields, i.e. pseudo-Riemannian Lie groups of type (n − 1,1). For example the
results in [2, 4, 15, 17].

The paper is organized as follows. First, we recall some facts on non-Killing left-invariant
conformal vector fields on pseudo-Riemannian Lie groups in Section 2, and then prove the
following Theorem in Section 3.

Theorem 1. Let G be a Lorentzian Lie group or a pseudo-Riemannian Lie group of type (n −2,2),
where n ≥ 4. If G admits a non-Killing left-invariant conformal vector field, then G is solvable.

But it is unknown for general type (p, q) for p, q ≥ 3, and we conjecture that Theorem 1 holds
for any type (p, q) for p, q ≥ 3.

In Section 4, we construct a class of pseudo-Riemannian solvable Lie groups of type (p, q)
which admit non-Killing left-invariant conformal vector fields, and then prove they are confor-
mally flat. That is, they satisfy Lichnérowicz conjecture in the pseudo-Riemannian case.

2. Preliminaries

Let G be a Lie group with the Lie algebra g consisting of left-invariant vector fileds and let 〈 · , · 〉 be
a pseudo-Riemannian metric on G . Assume that ∇ is the Levi-Civita connection associated with
〈 · , · 〉. Then

[X ,Y ] =∇X Y −∇Y X . (2)

If 〈 · , · 〉 is left-invariant on G , we have

〈∇Z X ,Y 〉+〈X ,∇Z Y 〉 = 0, (3)

for any X ,Y , Z ∈ g. By (2) and (3),

〈∇X Y , Z 〉 = 1

2
(〈[X ,Y ], Z 〉−〈[Y , Z ], X 〉+〈[Z , X ],Y 〉), (4)

where X ,Y , Z are all left-invariant vector fields. Assume that X ∈ g is a conformal vector field,
by (1), we have

0 = LX 〈X , X 〉 = 2ρ|X |2.

Furthermore if 〈 · , · 〉 is Riemannian, then ρ = 0 or X = 0. That is, X is Killing or trivial.
For left-invariant pseudo-Riemannian metrics 〈 · , · 〉, we have
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Lemma 2 ( [2]). Let G be a unimodular pesudo-Riemannian Lie group. Then any left-invariant
conformal vector field on G is a Killing vector field.

If G is a non-unimodular pseudo-Riemannian Lie group, we have the following result.

Lemma 3 ( [2]). Let G be an n-dimensional non-unimodular pseudo-Riemannian Lie group
of type (p, q). If g admits a non-Killing conformal vector field, then dimC (g) ≤ min(p, q) and
dim[g,g] ≥ dimg−min(p, q).

Furthermore, for a Lorentzian Lie group, we have the following Lemma.

Lemma 4 ( [15]). Let G be a Lorentzian Lie group admitting a non-Killing left-invariant confor-
mal vector field. Then dim[g,g] = dimg−1.

3. The proof of Theorem 1

In order to prove Theorem 1, we first recall two facts.

Lemma 5 ( [10]). Let g be a Lie algebra over R. If there is an invertible derivation on g, then g is
nilpotent.

Lemma 6. For any matrix H ∈ so(n,1), either H has n−1 purely imaginary and two non-zero real
eigenvalues ±r ∈ R, or H has n +1 purely imaginary eigenvalues. Here, we consider 0 as a purely
imaginary number and so(n,1) is defined by

so(n,1) =
{(

A C
C ′ 0

)
: A =−A′ ∈Rn×n ,C ∈Rn×1

}
,

where A′ denotes the transpose of A.

Let G be a pseudo-Riemannian Lie group whose Lie algebra is g and let X be a non-Killing
left-invariant conformal vector field on G . Denote by 〈 · , · 〉 the pseudo-Riemannian metric of
signature (p, q) on G . Clearly 〈X , X 〉 = 0. By the definition of a conformal vector field (1), we have

〈[X ,U ],V 〉+〈U , [X ,V ]〉 =−2ρ〈U ,V 〉, (5)

where U , V ∈ g and 0 6= ρ is a constant.

Lemma 7 ( [2]). Let G be a Lorentzian Lie group admitting a non-Killing left-invariant conformal
vector field. Then the restriction of 〈 · , · 〉 on [g,g] is degenerate.

In fact, this lemma holds for any pseudo-Riemannian Lie group.

Lemma 8. Let G be a pseudo-Riemannian Lie group admitting a non-Killing left-invariant
conformal vector field X . Then the restriction 〈 · , · 〉 on [g,g] is degenerate.

Proof. Assume that the restriction 〈 · , · 〉 on [g,g] is non-degenerate. Then the restriction 〈 · , · 〉 on
[g,g]⊥ is non-degenerate. Thus there is a vector field U ∈ [g,g]⊥ such that 〈U ,U 〉 6= 0. By (5),

0 = 〈[X ,U ],U 〉+〈U , [X ,U ]〉 =−2ρ〈U ,U 〉.
Thus ρ = 0, it is a contradiction. So the restriction 〈 · , · 〉 on [g,g] is degenerate. �

Proposition 9. Assume that G is a pseudo-Riemannian Lie group of type (p, q). If G admits a non-
Killing left-invariant conformal vector field and dim[g,g] = dimg−min(p, q), then G is solvable.
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Proof. Assume that X ∈ g is a non-Killing conformal vector filed. Let V0 = {y ∈ g |ad X (y) = 0}.
By (5), for any u, v ∈V0 we have

0 = 〈ad X (u), v〉+〈u, ad X (v)〉 =−2ρ〈u, v〉.
Since ρ 6= 0, it follows 〈u, v〉 = 0 for any u, v ∈ V0. So V0 is an isotropy subspace of (g,〈 · , · 〉). Let
k = dimV0. Since ad X (g) ⊂ [g,g], we have

k ≥ dimg−dim[g,g] = min(p, q).

Let m denote the multiplicity of the eigenvalue 0 of ad X . Clearly m ≥ k. We claim k = m.
Otherwise, m > k. By the Jordan canonical form theory for a nilpotent matrix, there are non-zero
vectors w ∈ g, v0 ∈V0 satisfying ad X (w) = v0. Obviously, w 6∈V0. Since V0 is an isotropy subspace,
for any v ∈V0, we have

0 = 〈ad X (w), v〉+〈w, ad X (v)〉 =−2ρ〈w, v〉,
which implies 〈w, v〉 = 0 since ρ 6= 0. It follows that

0 = 〈ad X (w), w〉+〈w, ad X (w)〉 =−2ρ〈w, w〉,
which implies 〈w, w〉 = 0. Then we have an isotropy subspace of dimension ≥ min(p, q) + 1
spanned by V0 and w , which is impossible. That is, k = m.

If ad X isn’t invertible on [g,g], then we have

k = m ≥ min(p, q)+1.

Namely dimV0 ≥ min(p, q)+1. It is a contradiction since V0 is an isotropy subspace of (g,〈 · , · 〉).
Hence ad X must be invertible on [g,g]. By Lemma 5, we know that [g,g] is nilpotent which
implies the solvability of g. �

The proof of Theorem 1. For the Lorentzian case, by Lemma 4, dim[g,g] = dimg− 1. Thus G is
solvable by Proposition 9.

For the pseudo-Riemannian Lie group of type (n −2,2), by Lemma 3, dim[g,g] ≥ dimg−2. By
Lemma 2, we must have dim[g,g] = dimg−2 or dim[g,g] = dimg−1. If dim[g,g] = dimg−2, then
G is solvable by Proposition 9. If dim[g,g] = n−1, by Lemma 8, there is a basis {e1,e2, . . . ,en−1,en}
of g such that [g,g] = span{e1,e2, . . . ,en−1} and the metric matrix associated with this basis is
defined by 

In−3 0 0 0
0 −1 0 0
0 0 0 −1
0 0 −1 0

 . (6)

Set ad X (e j ) = ∑n
i=1 ai j ei , ai j ∈ R,1 ≤ i , j ≤ n. By (5), we know the matrix of ad X associated with

this basis is represented by  H −ρIn−3 0 α

β −2ρ 0
0′ 0 0

 .

where H ∈ so(n − 3,1), α ∈ R(n−2)×1 and β ∈ R1×(n−2). By Lemma 6, we know the eigenvalues of
(ad X )|[g,g] are of the forms:

−ρ,−2ρ,−ρ±λ,−ρ+ ia (0 6= a ∈R).

If λ 6= ±ρ, then (ad X )|[g,g] is invertible. By Lemma 5, [g,g] is nilpotent which implies the
solvability of g. If λ= ρ or λ=−ρ, then the eigenvalues of (ad X )|[g,g] are of the forms:

−ρ,−2ρ (of multiplicity 2),0 (of multiplicity 1),−ρ+ ia (0 6= a ∈R).
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Assume that g= snr is a Levi decomposition of gwith s 6= 0. Let X = Xs+Xr be the corresponding
decomposition of X . Then we have

ad X =
(

(ad Xs)|s 0
∗ (ad X )|r

)
: sn r→ sn r.

In particular, the eigenvalues of (ad Xs)|s would be also eigenvalues of ad X . It contradicts to
tr(ad Xs)|s) = 0. So s= 0, i.e. g is solvable.

That is, we have Theorem 1. �

In general, we have the following conjecture.

Conjecture 10. Let G be a pseudo-Riemannian Lie group of type (p, q) where p, q ≥ 3. If G admits
a non-Killing left-invariant conformal vector field, then G is solvable.

4. Conformally flat pseudo-Riemannian Lie groups

The following example generalizes the Lorentzian case in [2] to type (p, q).

Example 11. Consider the Lie algebra g defined by

[en ,ei ] =−ρei , 1 ≤ i ≤ n −2, [en ,en−1] =−2ρen−1, (7)

where {e1,e2, . . . ,en} is a basis of g, and ρ is a non-zero constant. Clearly, g is a non-umimodular
solvable Lie algebra with abelian derived algebra [g,g] = span{e1,e2, . . . ,en−1}. Define an inner
product 〈 · , · 〉 of signature (p, q) (p, q ≥ 1) on g associated with the basis {e1,e2, . . . ,en} by

Ip−1

−Iq−1

0 1
1 0

 . (8)

Let G denote the simply connected Lie group with the Lie algebra g, and we also use the symbol
〈 · , · 〉 to denote the induced left-invariant pseudo-Riemannian metric on G . Then X ∈ g is a non-
Killing conformal vector field on (G ,〈 · , · 〉) if and only if

〈[X ,ei ],e j 〉+〈ei , [X ,e j ]〉 =−2c〈ei ,e j 〉, (9)

where 1 ≤ i , j ≤ n, and c is a non-zero constant. By a straightforward computation, we know
X = en is a left-invariant non-Killing conformal vector field on (G ,〈 · , · 〉) satisfying

LX 〈 · , · 〉 = 2ρ〈 · , · 〉. (10)

The following is to prove that (G ,〈 · , · 〉) is conformally flat. We first recall some definitions and
a theorem of Weyl. For a pseudo-Riemannian manifold (M , g ), denote by ∇, R, Ric and scal the
Levi-Civita connection, the Riemann curvature tensor, the Ricci tensor and the scalar curvature
respectively. For symmetric (0,2)-type tensor fields h,k on (M , g ), define the Kulkarni–Nomizu
product as the (0,4)-type tensor field by

h ◦k(v1, v2, v3, v4) = 1

2
(h(v1, v4)k(v2, v3)+h(v2, v3)k(v1, v4))

− 1

2
(h(v1, v3)k(v2, v4)+h(v2, v4)k(v1, v3)).

The Schouten tensor for n > 2 is given by

P = 2

n −2
Ric − scal

(n −1)(n −2)
· g , (11)
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and the Weyl conformal curvature tensor W is defined by

R = P ◦ g +W, (12)

where R is the (0,4)-type Riemann curvature tensor and ◦ is the Kulkarni–Nomizu product. The
following result of Weyl is well-known.

Theorem 12 ( [16]). A pseudo-Riemannian manifold M of dimension ≥ 4 is conformally flat if
and only if the Weyl conformal curvature tensor W vanishes identically.

Let the notations as Example 11 for n ≥ 4. Denote by B the left-invariant pseudo-Riemannian
metric 〈 · , · 〉 and denote by ∇ the Levi-Civita connection as usual. Let

Bi j = B(ei ,e j ), [ei ,e j ] =Ci j
k ek ,∇ei e j = Γ j i

k ek ,

R(ei ,e j )ek = Ri j k
l el ,Ri j kl = Ri j k

s Bsl , Hi j kl = (P ◦B)(ei ,e j ,ek ,el ).

Using the Koszul’s formula, we have

Γi j
k = 1

2
(−Ci j

s Bst −C j t
s Bsi +Ct i

s Bs j )B tk .

where (B i j ) denotes the inverse matrix of (Bi j ). Furthermore, we have

Ri j k
l = Γk j

sΓsi
l −Γki

sΓs j
l −Ci j

sΓks
l

By the definition of g in Example 11, the non-zero Ci j
k are

Ci n
i = ρ =−Cni

i , i ≤ n −2; Cn−1,n
n−1 = 2ρ =−Cn,n−1

n−1.

Set εi = B(ei ,ei ) ∈ {±1} for i ≤ n −2. By a straightforward computation, the non-zero Γi j
k are

Γi i
n−1 =−ρεi , Γni

i = ρ, i ≤ n −2;Γn−1,n
n−1 =−2ρ, Γnn

n = 2ρ,

and by the symmetry of R corresponding to subscript, the fundamental non-zero Ri j k
l are

Ri ni
n−1 =−ρ2εi , Ri nn

i = ρ2, i ≤ n −2.

and consequently the fundamental non-zero Ri j kl are

Ri nni = ρ2εi , i ≤ n −2.

In particular, the Ricci tensor is

(Ric(ei ,e j )) =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 (n −2)ρ2

 ,

and the scalar curvature vanishes. Then by (11), we know that the Schouten tensor P = 2
n−2 Ric,

and the fundamental nonzero Hi j kl = (P ◦B)(ei ,e j ,ek ,el ) are

Hi nni = ρ2εi , i ≤ n −2.

Since the Weyl conformal curvature Wi j kl = Ri j kl −Hi j kl , by Theorem 12, we know that (G ,〈 · , · 〉)
is conformally flat.
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