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Introduction

Let X be a regular Noetherian scheme and D ⊂ X a divisor with strict normal crossings (cf.
Definition 15). In applications it is useful to have a descent theory for coherent sheaves on X
relative to a “covering” consisting of the open parts in the various completions of X along the
components of D and their intersections. For example when X is the (integral model of a) toroidal
compactification of a Shimura variety, these completions can be described as completions of
relative torus embeddings on mixed Shimura varieties. Our motivation comes from this case,
cf. [7]. In the case that D consists of one component and X is affine, these questions have been
treated in the literature, see e.g. [1,3,4,10], [13, Tag 0BNI]1. In this short article, we generalize these
results to arbitrary divisors with normal crossings without any affineness assumption, sticking to
the Noetherian case, however. Similar questions have also been investigated recently in [2, 5, 11].
Our result is as follows:

Let {Y } be the coarsest stratification of X into locally closed subschemes such that every
component of D is the closure Y of a stratum Y . For each stratum we define a sheaf of OX -
algebras on X :

RY (U ) :=CY OX (U ′) = lim
n

OX (U ′)/I n
Y

(U ′) (1)

where U is an open subset of X , and U ′ ⊂ U is such that U ′ ∩Y = U ∩Y . The definition of RY

does not depend on the choice of U ′ for RY may also be described as the push-forward ι∗OCY X |Y ,

1Note that there is a mistake in the treatment of the non-affine case in [1, p. 7–8].
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578 Fritz Hörmann

where CY X is the formal completion of X along Y , and CY X |Y is the open formal subscheme
with underlying topological space equal to Y and ι is the composed morphism of formal schemes
CY X |Y → X .

For any chain of disjoint strata Y1,Y2, . . . ,Yn such that Yi ⊂ Yi−1 for i = 2, . . . ,n, we define
inductively a sheaf RY1,...,Yn of OX -algebras on X which coincides with (1) for n = 1. For n > 1
we set

R ′
Y1,...,Yn

(U ) :=CY1
(RY2,...,Yn (U )⊗OX (U ) OX (U ′)). (2)

Here ⊗ is the usual tensor product (not completed!) and U ′ ⊂U is again such that U ′∩Y1 =U∩Y1.
Again this definition does not depend on U ′. RY1,...,Yn is defined to be the sheaf associated with
the pre-sheaf R ′

Y1,...,Yn
.

Let

[ X -coh ]

(∫
S,R

)cocart

be the category of the following descent data (it will be defined in a different way in the article,
which will explain the notation): For each stratum Y a coherent sheaf MY of RY -modules together
with isomorphisms

ρY ,Z : MY ⊗RY RY ,Z −→ MZ ⊗RZ RY ,Z

for any Y , Z with Z ⊂ Y , which are compatible w.r.t. any triple Y , Z ,W of strata with Z ⊂ Y and
W ⊂ Z in the obvious way.

Let

[ X -coh ](OX )

be the category of coherent sheaves on X .
Then we have

Main Theorem 19. The natural functor

[ X -coh ](OX ) −→ [ X -coh ]

(∫
S,R

)cocart

is an equivalence of categories.

1. Generalities

Let D →S be a bifibered category such that the fibers have all limits and all colimits. We will be
interested mainly in the following two cases

[ mod ] −→ [ ring ]

where [ ring ] is the category of commutative rings with 1 and [ mod ] is the bifibered category of
modules over such rings. Furthermore let X be a topological space. Then we consider

[ X -mod ] −→ [ X -ring ]

where [ X -ring ] is the category of ring sheaves on X which are coherent over themselves in the
sense of ringed spaces [12, §2, Définition 2] and [ X -mod ] is the bifibered category of sheaves of
modules over such ring sheaves. Rings and algebras will always be commutative unless otherwise
specified.

Back in the general case, for a morphism f ∈ Mor(S ) we denote by f• and f • the correspond-
ing push-forward and pull-back functors. By definition of a bifibered category f• is always left
adjoint to f •. Those functors are only defined up to a (unique) natural isomorphism. Whenever
we write f• or f • we assume that a choice has been made. For example, for a morphism f : S → T
of rings, f • is the forgetful map that considers a T -module as an S-module via f (hence there is
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Fritz Hörmann 579

a canonical choice in this case) and f• is its left-adjoint, the functor −⊗S T (which is also only
defined up to a unique natural isomorphism).

Pairs (I ,S) consisting of a diagram I (i.e. a small category) and a functor S : I → S form a 2-
category Diaop(S ), called the category of diagrams in S (cf. also [8]). A morphism of S -diagrams
(α,µ) : (I ,S) → (J ,T ) is a functor α : I → J together with a natural transformation µ : Tα⇒ S. A
2-morphism (α,µ) ⇒ (β,ν) is a natural transformation κ :α⇒β such that ν◦ (T ∗κ) =µ.

For each pair (I ,S), we define the category D(I ,S) of (I ,S)-modules, whose objects are lifts of
the functor S

D

��
I

S
//

M

88

S

to the given bifibered category, and whose morphisms are natural transformations between
those. An object is called coCartesian if all the morphisms M(ρ) for ρ : i → j are coCartesian. This
defines a full subcategory D(I ,S)cocart of D(I ,S). If p : I → E is a functor between small categories,
we also define the subcategory of E-coCartesian objects as those for which the morphisms M(ρ)
are coCartesian for all ρ such that p(ρ) is an identity.

We need a refinement of the categories defined above. Suppose we are given a full subcategory
Df of D whose objects shall be called finite. We assume that Df → S is still opfibered (i.e. push-
forward preserves finiteness) but not necessarily fibered. We define the full subcategories D(I ,S)f

and D(I ,S)f,cocart requiring point-wise finiteness.

Definition 1. In the example [ mod ] → [ ring ] an object M ∈ [ mod ] over a ring R is finite, if it is
a finitely generated R-module. We denote the corresponding full subcategory by [ mod-f.g. ].

In the example [ X -mod ] → [ X -ring ] an object M ∈ [ X -mod ] lying over the sheaf of rings R is
finite, if it is coherent in the sense of ringed spaces [12, §2, Définition 2]. In particular, locally on X ,
we have an exact sequence

R|nU −→ R|mU −→ M |U −→ 0

for some n,m ∈N0. We denote the corresponding full subcategory by [ X-coh ].

For each morphism (α,µ) : (I ,S) → (J ,T ), we have a corresponding pull-back (α,µ)∗ given by

((α,µ)∗M)i =µ(i )•Mα(i ) ∀ i ∈ I .

(α,µ)∗ has a right adjoint (α,µ)∗ given by Kan’s formula

((α,µ)∗M) j = lim
j×/J I

T (ν)•µ(i )•Mi ∀ j ∈ J ,

where an object in the slice category j ×/J I is denoted by a pair (i ,ν), with i ∈ I and ν : j →α(i ). If
(α,µ) : (I ,S) → (J ,T ) is purely of diagram type, i.e. if µ : T ◦α→ S is the identity, then (α,µ)∗ does
have also a left adjoint (α,µ)! given by

((α,µ)!M) j = colimI×/J j T (ν)•M(i ) ∀ j ∈ J ,

where an object in the slice category I ×/J j is denoted by a pair (i ,ν), with i ∈ I and ν :α(i ) → j .

Example 2. For the fibered category [ mod ] → [ ring ] and for each morphism (α,µ) : (I ,S) →
(J ,T ), the pull-back is given by

((α,µ)∗M)i = Mα(i ) ⊗Tα(i ) Si ∀ i ∈ I ,

and

((α,µ)∗M) j = lim
j×/J I

Mi ∀ j ∈ J ,
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where each Mi is considered an T j -module via the composition T j → Tα(i ) → Si . If µ : T ◦α→ S
is the identity, then

((α,µ)!M) j = colimI×/J j M(i )⊗Sα(i ) S j ∀ j ∈ J .

2. Morphisms of (finite) descent

We keep the notations introduced in the previous section.

Definition 3. We say that a morphism (α,µ) in Diaop(S ) is of descent if

(α,µ)∗ : D(J ,T )cocart −→D(I ,S)cocart

is an equivalence of categories.
We say that a morphism (α,µ) in Diaop(S ) is of finite descent if

(α,µ)∗ : D(J ,T )f,cocart −→D(I ,S)f,cocart

is an equivalence of categories.

That (α,µ) is of descent does not imply that (α,µ)∗ is an inverse to the equivalence (α,µ)∗.
This holds if and only if (α,µ)∗ preserves coCartesian objects. Obviously (α,µ)∗ always preserves
coCartesian objects if J = { · }.

The following proposition lists some of the basic properties of this formalism. Assertions (i)–
(iv) are very general and hold also in the context of an arbitrary fibered derivator. Assertions (v)–
(vi) are specific to the situation of an ordinary fibered category.

Proposition 4.

(i) The morphisms of descent (resp. of finite descent) satisfy the 2-out-of-3 property.
(ii) For two morphisms of diagrams in S

(I ,S)
(α,µ) -- (J ,T )
(β,ν)
mm

such that sequences of 2-morphisms (α,µ) ◦ (β,µ) ⇒ ··· ⇐ id and (β,µ) ◦ (α,µ) ⇒ ··· ⇐ id
exist, we have that (α,µ) and (β,µ) are of descent (resp. of finite descent).

(iii) Let (α,µ) : (I ,S) → (J ,T ) be a morphism of diagrams in S . If for every j ∈ J the morphism
(α j ,µ j ) : ( j ×/J I ,pr∗2 S) → ( j ,T j ) is of descent (resp. of finite descent) then (α,µ) is of descent
(resp. of finite descent).

If α : I → J is a Grothendieck fibration then the statement holds with the slice category
j ×/J I replaced by the fibered product j ×J I .

(iv) Let α : I → J be a morphism of diagrams and let (α, id) : (I ,α∗S) → (J ,S) be a morphism
of diagrams in S of pure diagram type. If (I ×/J j ,Sk ) → ( · ,Sk ) is of descent (resp. of finite
descent) for all j ,k ∈ J then (α, id) is of descent (resp. of finite descent).

(v) Let S ∈ S be an object and I a diagram. Denote by (I ,S) the corresponding constant
diagram. There is an equivalence of categories

D(I ,S)cocart −→D(I [Mor(I )−1],S)cocart

(resp. decorated with f) where I [Mor(I )−1] is the universal groupoid to which I maps.
I [Mor(I )−1] is equivalent to the small category whose set of objects is π0(I ) and whose
morphism sets are

Hom(ξ,ξ′) =
{
π1(I ,ξ) if ξ= ξ′,
; otherwise.

In particular (I ,S) → ( · ,S) is of descent (resp. of finite descent) if π0(I ) =π1(I ) = { · }.
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(vi) Let ∆ be the simplex category, and let ∆◦ be the injective simplex category. Let (∆,S•),
resp. (∆◦,S•) be a cosimplicial, resp. a cosemisimplicial object in S . Then the category
D(∆,S•)cocart, resp. D(∆◦,S•)cocart, is equivalent to the category of classical descent data,
whose objects are an object M in D(S0) together with an isomorphism in D(S1)

ρ : (δ0
1)∗M −→ (δ1

1)∗M

such that the following equality of morphisms in D(S2) holds true:

(δ0
2)∗ρ ◦ (δ2

2)∗ρ = (δ1
2)∗ρ.

Here δi
k is the strictly increasing map {0, . . . ,k −1} → {0, . . . ,k} omitting i .

Proof. (i). The statement is clear.

(ii). The statement follows from the fact that if ρ : (α,µ) → (β,ν) is a 2-morphism between 1-
morphisms (I ,S) → (J ,T ) and M ∈D(J ,T ) is a coCartesian object, then the morphism

ρ∗ : (α,µ)∗M −→ (β,ν)∗M

is an isomorphism.

(iii). We start by showing that both unit and counit

(α,µ)∗(α,µ)∗E −→ E F −→ (α,µ)∗(α,µ)∗F

are isomorphisms when restricted to the subcategories of coCartesian objects. Let j : ( · ,T j ) →
(J ,T ) be the embedding. We have to check that

j∗E −→ j∗(α,µ)∗(α,µ)∗E (3)

is an isomorphism for all j .
Consider the 2-commutative diagram:

( j ×/J I , ι∗j S)
ι j //

p j

��

(I ,S)

(α,µ)

��
( j ,T j ) //

5=

(J ,T )

By the explicit point-wise formula for (α,µ)∗, the morphism (3) is the same as

j∗E −→ p j ,∗ι∗j (α,µ)∗E j .

The morphism induced by the 2-morphism in the diagram ι∗j (α,µ)∗E → p∗
j j∗E is an isomor-

phism on coCartesian objects by definition. Since the unit id → p j ,∗p∗
j is an isomorphism by as-

sumption, we are done.
We now show that (α,µ)∗ preserves coCartesian objects. Let ρ : j1 → j2 be a morphism in J . It

induces a map of fibers (purely of diagram type) ρ : ( j2 ×/J I ,pr∗2 S) → ( j1 ×/J I ,pr∗2 S). We have to
show that

S(ρ)∗((α,µ)∗M) j1 −→ ((α,µ)∗M) j2

is an isomorphism. This can be checked after pull-back along p2 : ( j2 ×/J I ,pr∗2 S) → ( j2,T j2 )
because this induces an equivalence of the categories of coCartesian objects by assumption.
Since S(ρ)p2 = p1ρ we get the morphism

ρ∗p∗
1 ((α,µ)∗M) j1 −→ p∗

2 ((α,µ)∗M) j2

which is the same as
ρ∗ι∗1 M −→ ι∗2 M .

Since ι2 = ι1 ◦ρ, this is an isomorphism.
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To see that the counit is an isomorphism on coCartesian objects, we have to see that

ι∗j (α,µ)∗(α,µ)∗E −→ ι∗j E (4)

is an isomorphism for all j . Since (α,µ)∗ preserves coCartesian objects, this is again the mor-
phism

p∗
j j∗(α,µ)∗E −→ ι∗E

and hence the morphism induced by the counit

p∗
j p j ,∗ι∗E −→ ι∗E .

This is an isomorphism on coCartesian objects by assumption.
Proof of the additional statement: If α is a Grothendieck fibration, we have an adjunction

( j ×J I , ι∗j S)
ι j ..

( j ×/J I ,pr∗2 S)
κ j

nn

with κ j ι j = id and such that there is a 2-morphism ι jκ j ⇒ id. Hence by (ii), these morphisms are
of descent (resp. of finite descent). Hence we may replace j ×/J I by j ×J I in the statement.

(iv). We will show again that both unit and counit

(α,µ)!(α,µ)∗E −→ E F −→ (α,µ)∗(α,µ)!F

are isomorphisms when restricted to the subcategories of coCartesian objects. Let j : ( · ,T j ) →
(J ,T ) be the embedding. We have to see that

j∗(α,µ)!(α,µ)∗E −→ j∗E (5)

is an isomorphism for all j .
Consider the 2-commutative diagram:

(I ×/J j ,T j )
ι //

p j

��

(I ,S)

(α,µ)

��u}
( j ,T j ) // (J ,T )

By the explicit point-wise formula for (α,µ)!, the morphism (5) is the same as

p j ,!ι
∗(α,µ)∗E −→ j∗E j .

The morphism induced by the 2-morphism in the diagram ι∗(α,µ)∗E → p∗
j j∗E is an isomor-

phism on coCartesian objects by definition. Since the counit p j ,!p∗
j → id is an isomorphism by

assumption, we are done.
We now show that (α,µ)! preserves coCartesian objects. Let ρ : j1 → j2 be a morphism in J . We

have to show that

S(ρ)∗((α,µ)!M) j1 −→ ((α,µ)!M) j2

is an isomorphism. After inserting the point-wise formula and denoting p ′
2 : (I ×/J j1,T j2 ) →

( · ,T j2 ), ι′2 : (I ×/J j1,T j2 ) → (I ,α∗T ) we get:

p ′
2,!(ι

′
2)∗M −→ p2,!ι

∗
2 M . (6)

This is the morphism induced by the counit ρ̃!ρ̃
∗ for the morphism ρ̃ : (I×/J j1,T j2 ) → (I×/J j2,T j2 )

(composition with ρ). Now observe that p ′
2,!, resp. p2,!, by assumption, can be computed on

coCartesian elements just by evaluation at any element of I ×/J j1 resp. I ×/J j2. Therefore (6)
is an isomorphism.

(v). The statement is obvious.
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(vi). We have to show that the inclusion ι : (∆◦
≤3,S•) → (∆◦,S•) is of descent (resp. of finite

descent), the category D(∆◦
≤3,S•)cocart being clearly just the category of classical descent data.

By (iv) and (v) this amounts to showing that ∆◦
≤3 ×/∆◦ ∆n is connected and π1(∆◦

≤3 ×/∆◦ ∆n) is
trivial. This is well-known. Note that it is essential to take 3 terms of ∆◦ here. For example
π1(∆◦

≤2 ×/∆◦ ∆3) ∼=Z. The same holds with ∆◦ replaced by ∆ because there is an adjunction

∆◦≤m ×/∆◦ ∆n
// ∆≤m ×/∆∆noo

and the morphism
(∆,S•) −→ (∆◦,S•)

is of descent (resp. of finite descent). To prove the latter assertion, by (iv) it suffices to show that
∆◦×/∆∆n is contractible. To see this, consider the projection p : ∆◦×/∆∆n → · . It has a section s
given by mapping · to id∆n . We construct a morphism

ξ :∆◦×/∆∆n −→∆◦×/∆∆n

mapping α :∆k →∆n to α′ :∆k+1 →∆n given by

α′(i ) =
{
α(i ) i < k,

n −1 i = k,

and mapping an injective morphism β :∆k →∆k ′ such that

∆k
β //

  

∆k ′

}}
∆n

commutes to the (still injective) morphism β′ :∆k+1 →∆k ′+1 given by

β′(i ) =
{
β(i ) i < k,

k ′ i = k.

We have p ◦ s = id{ · } and here are obvious 2-morphisms

s ◦p ⇒ ξ id∆◦×/∆∆n ⇒ ξ

showing that ∆◦ ×/∆ ∆n is contractible, or, what matters here, that (∆◦ ×/∆ ∆n ,S) → ( · ,S) is of
descent (resp. finite descent) for any S ∈S . �

We need a refinement of Proposition 4(iii)/(iv) which also is specific to the situation of fibered
categories and will not hold in any context of cohomological descent. Call an object j ∈ J initial
if no morphism j ′ → j exists with j 6= j ′.

Lemma 5. Let again D → S be a bifibered category with choice of a full subcategory of finite
objects Df as above. Let (α,µ) : (I ,S) → (J ,T ) be a morphism of diagrams in S . Assume that for any
object j there is a morphism k → j from an initial object k.

Then (α,µ) is of descent (resp. of finite descent) if p j : ( j ×/J I ,pr∗2 S) → ( j ,T j ) is such that p∗
j

is fully-faithful for any j ∈ J and such that p j is of descent (resp. of finite descent) for any initial
object j . If α is a Grothendieck fibration then the same holds with j ×/J I replaced by j ×J I .

Proof. By the proof of Proposition 4(iii), (α,µ)∗ is fully-faithful because all p∗
j are fully-faithful.

We show by direct construction that (α,µ)∗ is essentially surjective. Let M be an (I ,S)-module
and j ∈ J an object. Choose a morphism α j : k → j such that k is initial, which is the identity if j
is already initial. Define

N ( j ) := (pk,∗ι∗k M)⊗T (k) T ( j ) = ( · ,T (α j ))∗(pk,∗ι∗k M).

C. R. Mathématique, 2020, 358, n 5, 577-594
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Note that (pk )∗ is an inverse to the equivalence (pk )∗. For a morphism ν : j1 → j2 we must define
a morphism N ( j1)⊗T ( j1) T ( j2) → N ( j2) or, in other words ( · ,T (ν))∗N ( j1) → N ( j2). We have the
standard 2-commutative diagram

( j ×/J I , ι∗j S)
ι j //

p j

��

(I ,S)

(α,µ)

��
( j ,T j ) //

5=

(J ,T )

Denote µν the morphism induced by ν: ( j2 ×/J I ,pr∗2 S) → ( j1 ×/J I ,pr∗2 S). We have

p j1 ◦µν = ( · ,T (ν))◦p j2

and

ι j1 ◦µν = ι j2 .

We give the morphism

( · ,T (ν))∗( · ,T (α j2 ))∗(pk1,∗ι∗k1
M) −→ ( · ,T (α j2 ))∗(pk2,∗ι∗k2

M).

Because of fully-faithfulness we may do so after pulling back via p∗
j2

and hence define p∗
j2

applied to it as the following composition

p∗
j2

( · ,T (ν))∗( · ,T (α j1 ))∗(pk1,∗ι∗k1
M)

∼
��

p∗
j2

( · ,T (α j2 ))∗(pk2,∗ι∗k2
M)

∼
��

µ∗
ν◦α j1

p∗
k1

pk1,∗ι∗k1
M

∼
��

µ∗
α j2

p∗
k2

pk2,∗ι∗k2
M

∼
��

µ∗
ν◦α j1

ι∗k1
M

∼
��

µ∗
α j2

ι∗k2
M

∼
��

ι∗j2
M ι∗j2

M

using that p∗
k1

and pk1,∗ define an equivalence. One checks that this association is functorial. �

3. Descent for modules

Lemma 6. Let R → R ′ be a ring homomorphism. For a morphism (I ,S) → (J ,T ) of diagrams of R-
algebras the property of being of descent for arbitrary modules implies that (I ,S⊗R R ′) → (J ,T⊗R R ′)
is of descent for arbitrary modules.

If R → R ′ is finite then for a morphism (I ,F ) → (J ,G) of diagrams of R-algebras the property of
being of descent for finitely generated modules implies that (I ,S ⊗R R ′) → (J ,T ⊗R R ′) is of descent
for finitely generated modules.

Proof. The category of (I ,S ⊗R R ′)-modules is equivalent to the category of (I ,S)-modules with
R ′-action, i.e. to the category whose objects are pairs consisting of an object X ∈ [ mod ](I ,S) and
of a homomorphism of (non-commutative) R-algebras ρ : R ′ → EndR (X ). �

Lemma 7. Let (α,µ) : (I ,S) → (J ,T ) be a morphism of diagrams of rings such that I ×/J j is a finite
diagram for all j . If (α,µ)∗ is faithful then (α,µ)∗M finitely generated implies M finitely generated.
In particular “of descent” implies “of descent for finitely generated modules”.
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Proof. This is similar to the statement that a module is finitely generated if it becomes finitely
generated after a faithfully flat ring extension. Let M be a coCartesian module over (J ,T ) such
that (α,µ)∗M is finitely generated. Let j ∈ J . For each (i ,ρ : α(i ) → j ) ∈ I ×/J j we know that
M(α(i ))⊗Tα(i ) Si is a finitely generated Si -module. Let {ξi ,ρ

k }k be images in M( j ) of the (finitely
many) M(α(i ))-components of those generators. We claim that the union over those finite sets
for all objects in I ×/J j generates M( j ). For let N ( j ) be the submodule generated by them, and
assume that N ( j ) is different from M( j ). The non-zero morphism j∗M → M( j )/N ( j ) induces
a non-zero morphism M → j∗(M( j )/N ( j )) and therefore a non-zero morphism (α,µ)∗M →
(α,µ)∗ j∗(M( j )/N ( j )) because (α,µ)∗ is faithful. For any i consider the morphism i∗(α,µ)∗M →
i∗(α,µ)∗ j∗M( j )/N ( j ) which is

M(α(i ))⊗T (αi ) S(i ) −→ (α(i )∗( j∗M( j )/N ( j )))⊗T (αi ) S(i ),

or also

M(α(i ))⊗T (αi ) S(i ) −→
( ∏
α(i )→ j

M( j )/N ( j )

)
⊗T (αi ) S(i ).

This is the tensor product with S(i ) of the map induced by the canonical ones M(α(i )) → M( j ).
By construction of N ( j ) this map is zero, a contradiction. �

4. Descent for modules on ringed spaces

Lemma 8. For the bifibered category

[ X -mod ] −→ [ X -ring ]

we have that (I ,S) → (J ,T ) is of descent (resp. of finite descent) if for any open set U ⊂ X there is a
cover U = ⋃

i Ui such that (I ,S|Ui ) → (J ,T |Ui ) is of descent (resp. of finite descent) for the bifibered
category

[ Ui -mod ] −→ [ Ui -ring ].

Proof. This is an obvious glueing argument. Alternatively one could construct a commutative
square of diagram-morphisms

(I ×∆◦,S•) //

��

(J ×∆◦,T•)

��
(I ,S) // (J ,T )

where the vertical morphisms consist point-wise in I (resp. J ) of the restrictions of Si (resp. T j )
to a hypercovering of X such that the top horizontal morphism consists point-wise in ∆◦ of a
morphism of descent (resp. of finite descent). By explicit construction one sees that the upper
horizontal morphism is also of descent (resp. of finite descent). The vertical morphisms are then
of descent by the definition of sheaf. This shows that also the lower horizontal morphism is of
descent (resp. of finite descent). �

5. Descent and projective systems

Let S be a Noetherian ring, a an ideal of S and consider the diagram (Nop,S•) where Sn = S/anS
for every n ∈N.
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Lemma 9. For an object M• ∈ [ mod ](Nop,S•) the following assertions are equivalent

(i) M• ∈ [ mod-f.g. ](Nop,S•)cocart.
(ii) M1 is finitely generated and for each for each k ≤ l , the sequence

0 // ak Ml
// Ml

// Mk
// 0

is exact.

Proof. The exact sequence

0 // ak S // S // S/ak S // 0

tensored with Ml yields the sequence

0 // ak Ml
// Ml

// (S/ak S)⊗S Ml
// 0

Hence coCartesianity of the diagram is equivalent to the exactness of the sequence above. It
suffices to show that for a coCartesian diagram the condition that M1 is finitely generated implies
that Mk is finitely generated. Consider the sequence of S/al S-modules

0 // aMl
// Ml

// M1
// 0

Since a is nilpotent in S/al S, this implies that Ml is finitely generated by Nakayama’s lemma. �

Lemma 10. Let R be a Noetherian ring, a an ideal and consider a diagram (I ,F ) of a-adically
complete and separated Noetherian R-algebras. Let (I ×Nop,F•) be the diagram with value Fn(i ) :=
F (i )⊗R R/anR. Let p : (I ×Nop,F•) → (I ,F ) be the obvious morphism.

(i) p∗ and p∗ induce an equivalence

[ mod-f.g. ](I ×Nop,F•)I−cocart ↔ [ mod-f.g. ](I ,F )

(ii) This equivalence restricts to an equivalence

[ mod-f.g. ](I ×Nop,F•)cocart ↔ [ mod-f.g. ](I ,F )cocart

of the full subcategories of coCartesian modules. In other words the morphism (I ×
Nop,F•) → (I ,F ) is of descent for finitely generated modules.

Proof. (i). By Proposition 4(iv) the statement can be checked point-wise. This reduces to the
case I = · . Then the equivalence results from [6, Chapitre 0, Proposition (7.2.9) and Corol-
laire (7.2.10)].

(ii). We will show that for a finitely generated coCartesian (I×N,F•)-module M , the module p∗M
is again coCartesian. Let ν : i → j be a morphism in I . We have to show that the morphism(

lim
n

Mn( j )
)
⊗F ( j ) F (i ) −→ lim

n
Mn(i ) = lim

n
(Mn( j )⊗Fn ( j ) Fn(i ))

is an isomorphism. Using what is already proven, we may write this denoting M( j ) := limn Mn( j )

M( j )⊗F ( j ) F (i ) −→ lim
n

(M( j )⊗F ( j ) Fn(i )).

That this is an isomorphism follows from the following lemma. �

Lemma 11. Let R be a ring with ideal a. Assume that R is Noetherian and a-adically complete
and separated. Let M be a f.g. R-module, and let Sn be a projective system of R/anR-modules (or
algebras). Then we have:

M ⊗R (lim
n

Sn) ∼= lim
n

(M ⊗R Sn).
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Proof. Since R is Noetherian, we have an exact sequence of R-modules

Rk // Rm // M // 0

hence the exact sequence

Sk
n

// Sm
n

// Sn ⊗R M // 0

and, taking the limit, the exact sequence

(limn Sn)k // (limn Sn)m // limn(Sn ⊗R M) // 0.

On the other hand by tensoring the original sequence with limn Sn , we get

(limn Sn)k // (limn Sn)m // M ⊗R (limn Sn) // 0.

Comparing the two exact sequences proves the assertion. �

Proposition 12. Let R be a ring with ideal a.
Let (α,µ) : (I ,F ) → (J ,G) be a morphism of diagrams of Noetherian R-algebras such that CaF

and CaG consist of separated and Noetherian R-algebras, where Ca means completion w.r.t. to the
a-adic topology.

If (α,µ) is of descent for finitely generated modules then (I ,CaF ) → (J ,CaG) is of descent for
finitely generated modules.

Proof. Define Fn as F ⊗R R/anR. We have by definition CaF = limn Fn . Lemma 6 implies that
(I ,Fn) → (J ,Gn) is of descent for finitely generated modules. Therefore by Proposition 4(iv) the
morphism (I ×Nop,F•) → (J ×Nop,G•) is of descent for finitely generated modules. Now we have
the commutative diagram of diagrams of rings

(I ×Nop,F•) //

��

(J ×Nop,G•)

��
(I ,CaF ) // (J ,CaG)

in which the upper horizontal morphism is of descent for finitely generated modules and the
vertical ones are of descent for finitely generated modules by Lemma 10. Hence so is the lower
horizontal one. �

Lemma 13. Let R be a ring and a1, . . . ,an ideals of R. Let R ′ be a Noetherian R-algebra. Then we
have an isomorphism

Ca1 . . .Can R ′ ∼=Ca1+···+an R ′

In particular the left hand side does not depend on the ordering of the ai .

Proof. First note that
CbR ′

for any ideal b⊂ R and R-algebra R ′ is the limit over

R ′/b j R ′ ∼= R ′⊗R (R/b j ).

Applying the Lemma to R ′ with ideals ai R ′ we may thus assume that R = R ′ and R is Noetherian.
It obviously suffices to see this for two ideals a,b.
Consider the exact sequence

Rn (b1 ... bn ) // R // R/b j // 0

in which b j = (b1, . . . ,bn). Since Ca is exact on finitely generated R-modules, we get an exact
sequence

(CaR)n (b1 ... bn ) // CaR // Ca(R/b j ) // 0.
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Hence

CaR/b j CaR ∼= lim
i

R/(ai +b j )

for all j . Taking the limit we get

CbCaR ∼= lim
i , j

(R/(ai +b j )).

However, in this projective system of shape (Nop)2 the diagonal is initial, therefore this is the
same as

lim
i

R/(ai +bi ).

On the other hand, we also have that

(a+b)2i ⊆ ai +bi ⊆ (a+b)i

showing the statement. �

6. Descent along basic formal/open coverings

Proposition 14. Let R be a Noetherian ring and f a non-zero divisor of R. Denote R̂ the completion
of R w.r.t. ( f )-adic topology and let R f , and R̂ f , the rings R[ f −1], and R̂[ f −1], respectively. Then

(i) The morphism of diagrams

p : D :=


R̂

��
R f

// R̂ f

−→ R

is of descent for arbitrary modules (resp. for finitely generated modules).
(ii) For any sequence of ideals ai and elements fi such that I f1Ca1 . . . I fn Can R ,→

I f1Ca1 . . . I fn Can R f is injective, and the morphism

p̃ : I f1Ca1 . . . I fn Can D −→ I f1Ca1 . . . I fn Can R,

the functor p̃∗ is fully-faithful. Here I f , for an element f ∈ R, denotes the functor R ′ 7→
R ′[ f −1].

Proof. We will actually need only the following axioms on the diagram of rings D :

(a) R → R f and R → R̂ are flat R-algebras and R̂ f
∼= R̂ ⊗R R f .

(b) The sequence

0 // R // R f ⊕ R̂ // R̂ f
// 0 (7)

is exact.
(c) For each object (i.e. descent datum) (M̂ , M f , M̂ f ) ∈ [ mod ](D)cocart the map

M̂ ⊕M f −→ M̂ f

is surjective.

Let us verify that the axioms (a)–(c) hold in the situation of the lemma.

(a). Flatness of R f is clear. R̂ is flat, because R is Noetherian. The tensor property holds by
construction.
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(b). That the last map is surjective is clear. Hence the statement boils down to the Cartesianity of
the diagram of R-modules

R
f n
//

��

R

��
R̂

f n
// R̂

for any n. This diagram is Cartesian because f is not a zero divisor in R (and hence neither in R̂)
and we have an isomorphism

R/ f nR ∼= R̂/ f n R̂.

(c). Let ρ be the composition of the R̂ f -module isomorphism M f ⊗R f R̂ f → M̂ f and the inverse

of M̂ ⊗R̂ R̂ f → M̂ f . Let m f be any element of M f . We have for all q ∈ R̂ f :

ρ(m f ⊗q) =∑
j

m̂ j ⊗ f −n j p j q,

where p j ∈ R̂ are independent of q . Hence this element is of the form m̂ ⊗ 1 if q is sufficiently
divisible by f . Therefore, writing any given m f ⊗p ∈ M f ⊗R f R̂ f

∼= M̂ f as m′
f ⊗1+m′′

f ⊗q where q

is sufficiently divisible by f , we see that the map M̂ ⊕M f → M̂ f is surjective.

Now assume that the axioms (a)–(c) hold. First observe that also R̂ f is flat over R (base change
of flatness). Let M be an R-module. Tensoring the sequence (7) with M over R yields the exact
sequence

0 // M // M f ⊗ M̂ // M̂ f
// 0

where M f := M ⊗R R f , M̂ := M ⊗R R̂, and M̂ ⊗R R̂ f . This shows that M can be reconstructed as the
limit over the diagram 

M̂

��
M f

// M̂ f


Consequently the unit id → p∗p∗ of the adjunction is an isomorphism.

For the second assertion of the proposition observe that application of the functors Cai , and
I fi , respectively, induce exact sequences

0 // I f1Ca1 . . . I fn Can R // I f1Ca1 . . . I fn Can R f ⊕ I f1Ca1 . . . I fn Can R̂ // I f1Ca1 . . . I fn Can R̂ f
// 0

Therefore also after applying those functors to D , and R, respectively, we have that the unit
id → p̃∗p̃∗ of the new adjunction is an isomorphism.

Now let (M̂ , M f , M̂ f ) be a descent datum. We form the exact sequence (cf. axiom (c) for the
surjectivety of the map to M̂ f ):

0 // N // M f ⊗ M̂ // M̂ f
// 0

To see that the counit p∗p∗ → id is an isomorphism, we have to show that the natural maps
N ⊗R R f → M f and N ⊗R R̂ → M̂ are isomorphisms. Exactness of the sequence (7) yields that the
following diagram is Cartesian

R //

��

R f

��
R̂ // R̂ f
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From the Cartesianity, we may conclude that in the following diagram the right vertical mor-
phisms is an isomorphism:

0 // R //

��

R f

��

// R f /R

∼
��

// 0

0 // R̂ // R̂ f
// R̂ f /R̂ // 0

Now observe that after tensoring this diagram with R̂ over R the whole morphism of exact
sequences splits (via the multiplication maps), hence we get a diagram with exact rows and
columns:

0

��

0

��
ker

��

ker

��
0 // R̂ ⊗R R̂

��

// R̂ f ⊗R R̂

��

// (R̂ f /R̂)⊗R R̂ //

∼
��

0

0 // R̂

��

// R̂ f
//

��

(R f /R)⊗ R̂ // 0

0 0

Tensoring the diagram over R̂ with M̂ (letting R̂ act on the first factor in the first column) we get
exact colums which we may insert in the following diagram which gets exact rows and columns

0

��

0

��
ker⊗R̂ M̂

��

ker⊗R̂ M̂

��
0 // N ⊗R R̂

��

// M̂ ⊗R R̂ ⊕ M̂ f

��

// M̂ f ⊗R R̂ //

��

0

0 // M̂ // M̂ ⊕ M̂ f
//

��

M̂ f
//

��

0

0 0

This shows that the natural map N ⊗R R̂ → M̂ is an isomorphism.
That also N ⊗R R f → M f is an isomorphism follows because the axioms (a)–(c) are completely

symmetric in R̂ and R f . Actually, if we have, as in the formulation of the proposition, that R → R f

is an epimorphism of R-algebras, i.e. that R f = R f ⊗R R f , then this is even easier.
Finally the statement of descent for finitely generated modules follows from Lemma 7. �
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7. Descent along completions w.r.t. a divisor with normal crossings

Definition 15. A subscheme D of a regular scheme S is called a divisor with strict normal crossings
if it is the zero-locus of a Cartier divisor which is Zariski locally around any p ∈ D of the form
f1 · · · fm , where f1, . . . , fm are part of a sequence of minimal generators of the maximal ideal at p.

This definition differs slightly from [9, Exposé I, 3.1.5, p. 24] to the extent that there the
existence of f1, . . . , fm is assumed globally. Note that it follows from the definition that all V ( fi )
(defined locally) are regular themselves.

Let X be a regular Noetherian scheme and let D ⊂ X be a divisor with strict normal crossings.
Let {Y } be the coarsest stratification of X into locally closed subvarieties such that every compo-
nent of D is the closure of a stratum. For each stratum Y we define a sheaf of OX -algebras on X :

RY (U ) :=CY OX (U ′) = lim
n

OX (U ′)/IY (U ′)n

where U ′ ⊂U is such that U ′∩Y =U ∩Y . The definition of RY does not depend on the choice of
U ′ for RY may also be described as ι∗OCY X |Y , where CY X is the formal completion of X along Y ,
and CY X |Y is the open formal subscheme with underlying topological space equal to Y and ι is
the composed morphism of formal schemes CY X |Y → X .

For any chain of disjoint strata Y1,Y2, . . . ,Yn such that Yi ⊂ Yi−1, we define inductively a sheaf
RY1,...,Yn of OX -algebras on X which coincides with the previous one for n = 1. For n > 1 we set

R ′
Y1,...,Yn

(U ) :=CY1

(
RY2,...,Yn (U )⊗OX (U ) OX (U ′)

)
. (8)

Again U ′ ⊂U is such that U ′∩Y1 =U ∩Y1, and this definition does not depend on the choice of
U ′. RY1,...,Yn is defined to be the sheaf associated with the pre-sheaf R ′

Y1,...,Yn
. If X is affine, then

R ′
Y1,...,Yn

is already a sheaf. Hence the sheafification may at most change the value at non-quasi-
affine opens.

Example 16. Consider X = A2
k with coordinates y, z and D = V (y z). Then the strata are X ′ =

X \V (y z), Y =V (y) \V (z), Z =V (z) \V (y) and W =V (y, z). We have

RX ′ (X ) = k[y, z, y−1, z−1] RY (X ) = k[z, z−1]�y� RZ (X ) = k[y, y−1]�z� RW (X ) = k�y, z�
and (for example):

RX ′,W (X ) = k�y, z�[y−1, z−1] RX ′,Y (X ) = k[z, z−1]�y�[y−1] RX ′,Y ,W (X ) = k�z�[z−1]�y�[y−1]

Recall (cf. [12, §2, Proposition 7]) that for a sheaf of OX -algebras R as above (which is coherent
over itself as an R-module), a coherent sheaf M of R-modules is a sheaf of R-modules such that
on a covering {Ui } of X , we have an exact sequence

R|ni
Ui

−→ R|mi
Ui

−→ M |Ui −→ 0

for every i .

Lemma 17. If U ⊂ X is affine then for any of the sheaves R = RY1,...,Yn of OX -modules defined
above, we have an equivalence of categories of coherent sheaves of R|U -modules and finitely
generated R(U )-modules.

Proof. For a Noetherian topological space X consider the class of sheaves O of Noetherian rings
(which are coherent over themselves) on X which have the property that for all U ⊂ X in a fixed
cofinal system of opens (here the affines) the functor

ΓU : { coherent sheaves of O |U -modules } −→ { f.g. O (U )-modules }

E 7−→ E (U )

is an equivalence of categories.
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One shows that this class is closed under taking localizations and closed under taking comple-
tions w.r.t. a sheaf of ideals. This is shown as for coherent sheaves of OX -modules on a Noetherian
formal scheme X . �

Coming back to the stratification {Y } of X , we define the following semi-simplicial set S. The
set Sn consists of chains of disjoint strata [Y1, . . . ,Yn] such that Yi ⊂ Yi−1 (we write also Yi < Yi−1)
for i = 2. . .n with the obvious face maps. Alternatively consider the stratification as a partially
ordered set where Z ≤ Y if Z ⊂ Y . S is then the (semi-simplicial) nerve of this partially ordered
set.

We define also the category
∫

S whose objects are pairs (n,ξ), where n ∈ N and ξ ∈ Sn , and
whose morphisms µ : (n,ξ) → (m,ξ′) are morphisms µ :∆n →∆m in∆◦ such that S(µ)(ξ′) = ξ. This
is the fibered category associated with the functor (∆◦)op → [ set ] ⊂ [ cat ] via the Grothendieck
construction.

The construction (8) actually defines a functor

R :
∫

S −→ [ OX -alg ]

(n,Y1 > ·· · > Yn) 7−→ RY1,...,Yn .

Lemma 18. The category

[ X -coh ]

(∫
S,R

)cocart

is equivalent to the category of the following descent data: For each stratum Y a coherent sheaf MY

of RY -modules together with isomorphisms

ρY ′,Z : MY ⊗RY RY ,Z −→ MZ ⊗RZ RY ,Z

for any Y , Z with Z ⊂ Y , which are compatible w.r.t. any triple Y , Z ,W of strata with Z ⊂ Y and
W ⊂ Z in the obvious way.

Proof. This follows essentially from Proposition 4(vi). For this observe that the morphism
(
∫

S,R) → (∆◦,R ′), where R ′(∆m) := ∏
ξ∈Sm R(m,ξ) is of finite descent by Proposition 4(iii) and

the fact that Sm is finite. �

Main Theorem 19. The morphism (
∫

S,R) → ( · ,OX ) is of descent for coherent sheaves. In other
words the natural functor

[ X -coh ]

(∫
S,R

)cocart

−→ [ X -coh ](OX )

is an equivalence of categories.

Proof. By Lemma 8 and Lemma 17 we are reduced to a local, affine situation of the following
kind: We may assume that D is defined by an equation f1 · · · fn = 0 such that f1, . . . , fn are part of
a minimal sequence of generators of the maximal ideal of a point p ∈ D . We may also assume
(by possibly shrinking the affine cover) that all V ( fi1 , . . . , fik ) are irreducible for each subset
{i1, . . . , ik } ⊂ {1, . . . ,n}. The strata Y are then all of the form V ( fi1 , . . . , fik ) \ V ( fik+1 · · · fin ) such that
{i1, . . . , in} = {1, . . . ,n}. Denote R :=OX (U ) for such an open affine subset U . Then

RY = lim
l

R[ f −1
ik+1

, . . . , f −1
in

]/( f l
i1

, . . . , f l
ik

)

and inductively
RY1,Y2,...,Yn = lim

l
RY2,...,Yn [ f −1

ik+1
, . . . , f −1

in
]/( f l

i1
, . . . , f l

ik
)

for Y1 =V ( fi1 , . . . , fik )\V ( fik+1 · · · fin ). We similarly get a diagram (
∫

S,R) in Diaop([ ring ]) and have
to show that

[ mod-f.g. ]

(∫
S,R

)cocart ∼= [ mod-f.g. ](R) (9)
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is an equivalence. Note that our semi-simplicial set S here is equal to the (semi-simplicial) nerve
of the partially ordered set P ({1, . . . ,n}) (power set).

We show by induction on n that (9) is an equivalence as follows. Denote the diagram defined
before by (

∫
S(n),R(n)) where D has equation f1 · · · fn . Decreasing n by 1 means forgetting the

last element fn . For n = 1, S(1) is the nerve of the partially ordered set {} < {1} hence
∫

S(1) is the
diagram_ and we are precisely in the situation of Proposition 14(i). Therefore (

∫
S(1),R(1)) → ( · ,R)

is of descent. For n > 1 consider the stratification {Y } for f1, . . . , fn−1. Then cut each stratum Y in
the two pieces Y ′ = Y ∩V ( fn) and Y ′′ = Y \Y ′. This yields a chain of stratifications and refinements
like considered in the following Lemma. �

Lemma 20. We consider arbitrary stratifications of U such that each stratum is locally closed and
a union of the ones considered before. They are all of the form V ( fi1 , . . . , fik ) \ V ( fik+1 · · · fil ), where
however not necessarily {i1, . . . , il } = {1, . . . ,n}. The members of such a stratification form a partially
ordered set P as before and we denote by S the corresponding (semi-simplicial) nerve.

Let ν : P ′ → P be a morphism of such partially ordered sets which comes from a refinement
of stratifications such that precisely two strata Y ′,Y ′′ get mapped to one stratum Y and we have
Y ′ = Y ∩V ( f ) and Y ′′ = Y \ Y ′. It induces a map of semi-simplicial nerves, denoted ν by abuse of
notation, as follows: (∆n ,Y1 > ·· · > Yn) is mapped to (∆n′ ,ν(Y1) > ·· · > ν(Yn)) where in the sequence
ν(Y1) > ·· · > ν(Yn) double entries have been deleted such that every entry appears only once.

Let R, resp. R ′ be the corresponding ring-valued functors.
Then the functor induced by ν

[ mod-f.g. ]

(∫
S′,R ′

)cocart ∼= [ mod-f.g. ]

(∫
S,R

)cocart

is an equivalence.

Proof.

Claim. ν :
∫

S′ → ∫
S is a Grothendieck fibration.

Proof of the claim. For the fiber of ν over a ξ= (∆n ,Y1 > ·· · > Yn) there are two possibilities:

(1) If Y does not occur in the list, it consists of ξ itself, considered as an element of
∫

S′.
(2) If Y occurs in the list, the fiber consists of the diagram

(∆n ,Y1 > ·· · > Y ′ > ·· · > Yn)

��
(∆n ,Y1 > ·· · > Y ′′ > ·· · > Yn) // (∆n+1,Y1 > ·· · > Y ′ > Y ′′ > ·· · > Yn)

For a morphism in
∫

S′, say (∆n′ ,Yi1 > ·· · > Yin′ ) → (∆n ,Y1 > ·· · > Yn), there is an obvious pull-
back functor between these fibers which establishes ν as a Grothendieck fibration. �

Using the claim and Proposition 4(iii) we would have to show that the fibers of (S′
ξ
,R ′|ξ) →

(ξ,R(ξ)) are of descent for any ξ = (∆k ,Y1 > ·· · > Yk ) ∈ ∫
S′. Actually we have the refinement

Lemma 5 which reduces us to prove that for all Z the fiber above (∆0, Z ) (these are the initial
objects of

∫
S in the sense of Lemma 5) is of descent, and that for all other pξ : (S′

ξ
,R ′

ξ
) → (ξ,R(ξ))

the pull-back p∗
ξ

is fully faithful. In other words, we have to see that

(1): Only Z = Y is non-trivial.

pY :


RY ′

��
RY ′′ // RY ′,Y ′′

−→ (RY ) (10)
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is of descent for finitely generated modules. Observe that Y ′ =V ( fi1 , . . . , fik )\V ( f · fik+1 · · · fil ) and
Y ′′ = V ( fi1 , . . . , fik , f ) \ V ( fik+1 · · · fil ) with f not among the other fi . Therefore we have, denoting
R ′ := R[ f −1

ik+1
, . . . , f −1

il
] and using Lemma 13:

RY =C( fi1 ,..., fik
)R

′

RY ′ =C( fi1 ,..., fik
)(R ′[ f −1])

RY ′′ =C( fi1 ,..., fik
)C( f )R

′

RY ′,Y ′′ =C( fi1 ,..., fik
)((C( f )R

′)[ f −1])

Proposition 14(i) asserts that

p :


R ′[ f −1]

��
C( f )R

′ // (C( f )R
′)[ f −1]

−→ (R ′)

is of descent for finitely generated modules. Therefore, using Proposition 12, the original mor-
phism of diagrams (10) is of descent for finitely generated modules as well.

(2):

pξ :


RY1,...,Y ′,...,Yn

��
RY1,...,Y ′′,...,Yn

// RY1,...,Y ′,Y ′′,...,Yn

−→ (RY1,...,Y ,...,Yn )

is such that p∗
ξ

is fully-faithful (on finitely generated modules). This follows from Proposi-
tion 14(ii). �
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