Christopher S. Withers and Saralees Nadarajah

A note on bias reduction

<https://doi.org/10.5802/crmath.49>
A note on bias reduction

Christopher S. Withersa and Saralees Nadarajaha, b

a Industrial Research Limited, Lower Hutt, New Zealand
b University of Manchester, Manchester M13 9PL, UK
E-mails: kit.withers@gmail.com, mbbssn2@manchester.ac.uk

Abstract. Let \(\hat{w}\) be an unbiased estimate of an unknown \(w \in \mathbb{R}\). Given a function \(t(w)\), we show how to choose a function \(f_n(w)\) such that for \(w^* = \hat{w} + f_n(w)\), \(E t(w^*) = t(w)\). We illustrate this with \(t(w) = wa\) for some constant \(a\). For \(a = 2\) and \(\hat{w}\) normal, this leads to the convolution equation \(c_r = c_r \otimes c_r\).

1. Introduction

Let \(\hat{w}\) be an unbiased estimate of an unknown \(w \in \mathbb{R}\). Given a function \(t(w)\), we show how to choose a function \(f_n(w)\) such that \(E t(w^*) = t(w)\) for \(w^* = \hat{w} + f_n(w)\). We illustrate this in Section 2 with \(\hat{w}\) normal and \(t(w) = wa\) for some constant \(a\). For \(a = 2\) this gives the convolution equation \(c_r = c_r \otimes c_r\) to solve.

\(w^*\) is not an estimate since it depends on the unknown \(w\). The method extends to \(\hat{w}\) any standard estimate of an unknown \(w \in \mathbb{R}^p\) with respect to a given parameter \(n\). That is, \(E \hat{w} \to w\) as \(n \to \infty\) and, for \(r \geq 1\), its \(r\)th order cumulants have magnitude \(n^{1-r}\) and can be expanded as power series in \(n^{-1}\):

\[
\kappa(\hat{w}_{i_1}, \ldots, \hat{w}_{i_r}) = \sum_{e=r-1}^{\infty} n^{-e} k_{i_1}^{e_{i_1}, \ldots, e_{i_r}},
\]

for \(1 \leq i_1, \ldots, i_r \leq p\) and \(k_{0}^{i_1} = w_{i_1}\), where \(w_i\) is the \(i\)th component of \(w\), and the cumulant coefficients \(k_{e_{i_1}, \ldots, e_{i_r}}\) are bounded as \(n \to \infty\), but may depend on \(w\). For \(p = 1\), (1) can be written

\[
\kappa(\hat{w}) = \sum_{e=r-1}^{\infty} n^{-e} k_r,e
\]

for \(r \geq 1\), where \(k_{1,0} = w\). Cumulant coefficients are the building blocks of analytic methods for statistical inference. For example, methods for constructing estimates of low bias for any smooth function \(t(w) : \mathbb{R}^p \to \mathbb{R}\) were given in Mynbaev et al. [3] and Withers and Nadarajah [4–14].

* Corresponding author.
Given a sequence \(a_1, a_2, \ldots\), the exponential partial Bell polynomial \(B_{i,k}(a)\) is defined by
\[
\left(\sum_{j=1}^{\infty} a_j t^j \right)^k / k! = \sum_{j=k}^{\infty} B_{i,k}(a) t^j / j!
\]
for \(t \in R\) and \(k = 0, 1, \ldots\). It is tabled on p. 307–308 of Comtet [2] for \(1 \leq r \leq 12\). Given two sequences \(a_1, a_2, \ldots\) and \(b_1, b_2, \ldots\), their discrete convolution is defined by
\[
a_r \otimes b_r = \sum_{i=1}^{r} a_i b_{r-i}.
\]
Set \(\delta_{i1} = I(i = 1)\) and \((a)_j = a!/(a - j)!\).

2. Adding bias to \(\hat{w}\) to reduce the bias of \(\hat{t}(\hat{w})\)

Suppose that \(\hat{w} \sim N(w, v(w)/n)\), a normal estimate. Set
\[
v = v(w), \quad f_n(w) = \sum_{i=1}^{\infty} k_i n^{-i},
\]
where \(k_i = b_i / i!\) may depend on \(w\). Theorems 1 and 3 show how to choose \(k_i\) or \(b_i\) so that for any given \(a\),
\[
E(w^a) = w^a, \quad w^* = \hat{w} + f_n(w).
\]

Theorem 2.1 considers the case \(a = 2\). Theorem 3 considers the case \(a = 3\). Throughout, we set
\[
\delta = \hat{w} - w, \quad \nu = v / w^2, \quad m_n = E_w^* = w + f_n(w).
\]

Theorem 1. Take \(w^* = \hat{w} + f_n(w)\) with
\[
k_r = -c_r v^r / D^{2r-1},
\]
where \(D = 2w\) and, for \(r \geq 2\),
\[
c_1 = 1, \quad c_r = c_r \otimes c_r.
\]
Then \(E(w^*)^2 = w^2\).

Proof. For \(w^*\) of (3),
\[
E(w^*)^2 = m_n^2 + v/n = w^2 + 2w f_n(w) + f_n(w)^2 + v/n = w^2 + \sum_{i=1}^{\infty} T_i n^{-i},
\]
where \(T_i = D k_i + s_i + v \delta_{i1}\), \(s_1 = 0\), and for \(i \geq 2\),
\[
s_i = k_i \otimes k_i = \sum_{j=1}^{i-1} k_j k_{i-j}.
\]
So, \(T_0 = 0\) if we take \(k_i = -(s_i + v \delta_{i1}) / D\) for \(i \geq 1\). This gives the result. \(\square\)

Corollary 2 gives an explicit form for \(c_r\) in (5).

Corollary 2. For \(r \geq 2\),
\[
c_r = -\left(1/2 \right) \left(-4c_1\right)^r / r = 2^{r-1} 1 3 \cdots (2r - 3) / r!.
\]

Proof. Set
\[
C(t) = \sum_{r=1}^{\infty} c_r t^r,
\]
where \(c_1\) is now arbitrary. By (5), \(C(t) = c_1 t + C(t)^2\). Since \(C(0) = 0\), this gives
\[
C(t) = \left[1 - (1 - 4c_1 t)^{1/2}\right] / 2 = -\sum_{r=1}^{\infty} \left(1/2 \right) (-4c_1 t)^r / 2.
\]
which implies the result.

Theorem 3. Take $w^* = \hat{w} + f_n(w)$ with
\[
f_n(w) = w \sum_{j=0}^{\infty} A_j \left(\frac{c}{n^3}\right)^j / j! + wu \sum_{j=0}^{\infty} B_j \left(\frac{c}{n^3}\right)^j / j! - w,
\]
where $c = 4\nu^3$, $a_j = (1/2)^j/2$, $u = -\nu n^{-1}$, $B_k = a_{k+1}/a_1(k+1)$ and
\[
A_j = \sum_{k=0}^{j} (1/3)_k B_{j,k}(a).
\]
Then $E(w^*)^3 = w^3$.

Proof. For w^* of (3),
\[
E(w^*)^3 = m_n^3 + 3m_n\nu/n = w^3
\]
if $m_n^3 + 3m_n\nu/n - w^3 = 0$. Set $\gamma = (\nu/n)^3 + w^6/4$. Since $\gamma > 0$, this cubic has one real root given by
Equation (3.8.2) of Abramowitz and Stegun [1]:
\[
m_n = S_{1/3}^1 + S_{1/3}^2,
\]
where $S_j = w^3/2 \pm \gamma^{1/2}$. Suppose that $w > 0$. (If not, replace w by $|w|$.) Then for ν of (4),
\[
\nu^{1/2} = w^3(1 + d)^{1/2}/2,
\]
where $d = c n^{-3}$. Furthermore,
\[
(1 + d)^{1/2} = \sum_{j=0}^{\infty} \left(\frac{1/2}{j}\right) d^j, \quad S_1 = 1 + D
\]
for
\[
D = \sum_{j=1}^{\infty} \left(\frac{1/2}{j}\right) d^j/2 = \sum_{j=1}^{\infty} a_j d^j/ j!.
\]
Furthermore,
\[
D^k/k! = \sum_{j=k}^{\infty} B_{j,k}(a) d^j/ j!
\]
implies
\[
S_{1/3}^1 = \sum_{k=0}^{\infty} \left(1/3\right)_k D^k = \sum_{j=0}^{\infty} A_j d^j/ j!.
\]
Also
\[
S_2 = 1/2 - (1 + d)^{1/2}/2 = -\sum_{j=1}^{\infty} a_j d^j/ j! = -a_1 d(1 + U)
\]
for
\[
U = \sum_{k=1}^{\infty} B_k d^k/ k!
\]
and
\[
U^{1/ j!} = \sum_{k=j}^{\infty} B_{k,j}(B) d^k/ k!.
\]
Then
\[
S_{1/3}^2 = u(1 + U)^{1/3} = u \sum_{j=0}^{\infty} \left(\frac{1/3}{j}\right) U^j = u \sum_{j=0}^{\infty} (1/3)_j U^{j/ j!} = \sum_{k=0}^{\infty} C_k d^k/ k!,
\]
where
\[
C_k = \sum_{j=0}^{k} (1/3)_j B_{k,j}(B).
\]
Hence, for the choice of $f_n(w)$, $E(w^*)^3 = w^3$.

The method of Theorems 1 and 3 will not work for \(t(w) = w^5 \) since there is no explicit solution to a quintic. However, we now show how to obtain an unbiased or bias-reduced estimate of \(w^a \) for any \(a > 0 \). Set \(\Delta = \bar{w} - w = w^* - m_n \). Then
\[
E(\hat{w}^*)^a = E(m_n + \Delta)^a = \sum_{j=0}^{\infty} \binom{a}{j} m_n^{a-j} \mu_j(\bar{w}) = \sum_{j=0}^{\infty} \binom{a}{2j} m_n^{a-2j} \mu_{2j}(\bar{w}),
\]
where
\[
\mu_{2j}(\bar{w}) = N_j \nu^j, \quad N_0 = 1, \quad N_j = 1 \cdots (2j - 1)
\]
for \(j \geq 1 \). By (2),
\[
f_n(w)^k / k! = \sum_{i=k}^{\infty} B_{i,k}(b)n^{-i}/i!.
\]
So,
\[
(m_n / w)^a = \left[1 + f_n(w)/w \right]^a = \sum_{k=0}^{\infty} (a)_k w^{-k} f_n(w)^k / k! = \sum_{l=0}^{\infty} D_{a,i} n^{-i}/i!
\]
for
\[
D_{a,i} = \sum_{k=0}^{i} (a)_k w^{-k} B_{i,k}(b).
\]
This implies
\[
E(\hat{w}^*)^a / w^a = \sum_{k=0}^{\infty} n^{-k} E_k
\]
for
\[
E_k = \sum_{i+j=k} \binom{a}{2j} N_j \nu^j D_{a-2,j,i}/i!.
\]
So,
\[
b_1 = -(a - 1)w/2, \quad E_1 = 0, \quad E(\hat{w}^*)^a = w^a + O(n^{-2}),
\]
\[
b_2 = w(a - 1) \left[-(a - 1)^2 + (a - 1)wv - (a - 2)v^2 \right], \quad E_2 = 0, \quad E(\hat{w}^*)^a = w^a + O(n^{-3}).
\]
In this way, we can construct \(f_n(w) \) so that for any given \(a > 0 \) and \(k \geq 1 \),
\[
E(\hat{w} + f_n(w))^a = w^a + O(n^{-k}).
\]

References

