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Abstract. A nonlinear Korn inequality on a surface estimates a distance between a surface θ(ω) and another
surface φ(ω) in terms of distances between their fundamental forms in the space Lp (ω), 1 < p <∞.

We establish a new inequality of this type. The novelty is that the immersion θ belongs to a specific set of
mappings of class C 1 from ω into R3 with a unit vector field also of class C 1 over ω.

Résumé. Une inégalité de Korn non linéaire sur une surface estime une distance entre une surfaceθ(ω) et une
autre surfaceφ(ω) en fonction des distances entre leur formes fondamentales dans l’espace Lp (ω), 1 < p <∞.

Nous établissons une nouvelle inégalité de ce type. La nouveauté réside dans l’appartenance de l’immer-
sion θ à un ensemble particulier d’applications de classe C 1 de ω dans R3 avec un champ de vecteurs nor-
maux unitaires aussi de classe C 1 dans ω.
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1. Notation and definitions

Vector and matrix fields are denoted by boldface letters.
Given any open set Ω ⊂ Rn , n > 1, any subset V ⊂ Y of a finite-dimensional vector space Y ,

and any integer `> 0, the notation C `(Ω;V ) designates the set of all fields v = (vi ) :Ω→ Y such
that v (x) ∈ V for all x ∈ Ω and vi ∈ C `(Ω). Likewise, given any real number p > 1, the notation
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Lp (Ω;V ), resp. W `, p (Ω;V ), designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for
almost all x ∈Ω and vi ∈ Lp (Ω), resp. vi ∈W `, p (Ω).

The space of all real matrices with k rows and ` columns is denotedMk×`. We also let

Mk :=Mk×k ,Sk :=
{

A ∈Mk ; A = AT
}

,

Sk
> :=

{
A ∈Sk ; A is positive-definite

}
, and Ok

+ :=
{

A ∈Mk ; A AT = I and det A = 1
}

.

A k × ` matrix whose column vectors are the vectors v 1, . . . , v` ∈ Rk is denoted (v 1| . . . |v`). If
A ∈Sk>, there exists a unique matrix U ∈Sk> such that U 2 = A; this being the case, we let A1/2 :=U .

The Euclidean norm in R3 is denoted | · |. Spaces of matrices are equipped with the Frobenius
norm, also denoted | · |. The spaces Lp (Ω), Lp (Ω;Rk ), and Lp (Ω;Mk×`), are respectively equipped
with the norms denoted and defined by

‖u‖Lp (Ω) :=
(∫
Ω
|u(x)|p d x

)1/p

, ‖v‖Lp (Ω) :=
(∫
Ω
|v (x)|p d x

)1/p

,

and ‖A‖Lp (Ω) :=
(∫
Ω
|A(x)|p d x

)1/p

.

A domain Ω in Rn , n > 2, is a connected and open subset of Rn that is bounded and has
a Lipschitz-continuous boundary, the set Ω being locally on the same side of its boundary
(cf. Adams [1], Maz’ya [10], or Nečas [11]).

Given an open subset Ω of Rn and any integer ` > 0, the notation C `(Ω) designates the
space of all functions u ∈ C `(Ω) such that u and all their partial derivatives up to order `
possess continuous extensions to the closure Ω of Ω. If Ω ⊂ Rn is a domain, then C `(Ω) = { f |Ω;
f ∈C `(Rn)}, where f |Ω denotes the restriction of the function f to the setΩ, thanks to Whitney’s
extension theorem: cf. Whitney [12]; see also Ciarlet & Mardare [5].

Given a connected open subset Ω of Rn , the geodesic distance between two points x, y ∈Ω is
defined by

distΩ(x, y) := inf
{
` ∈R; there exists a path c ∈C 1 (

[0,`];Rn)
such that c(0) = x, c(`) = y, c(s) ∈Ω and

∣∣c ′(s)
∣∣= 1 for all s ∈ [0,`]

}
. (1)

IfΩ⊂Rn is a domain, then there exists a constant CΩ> 1 such that

distΩ(x, y)6CΩ
∣∣x − y

∣∣ for all x, y ∈Ω; (2)

see e.g. Anicic, Le Dret & Raoult [2, Proposition 5.1] .
A generic point in an open subset ω of R2 is denoted y = (y1, y2) and partial derivative

operators with respect to y1 and y2 are denoted ∂1 and ∂2.

2. Main result

An immersion of class C 1 from a two-dimensional domain ω ⊂ R2 into the three-dimensional
Euclidean space R3 is a mapping φ : ω→ R3 of class C 1 such that the two vector fields ∂1φ : ω
→ R3 and ∂2φ : ω→ R3 are linearly independent at each point of ω. This means that the image
of ω by φ is a surface in R3 whose tangent plane at its point φ(y), y ∈ ω, is spanned by the two
vectors ∂1φ(y) and ∂2φ(y). Consequently,

ν(φ) := ∂1φ∧∂2φ∣∣∂1φ∧∂2φ
∣∣ (3)

is a continuous unit vector field from ω into R3 that is normal to the surface φ(ω).
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Given an immersion φ :ω→R3 of class C 1, we let

∇φ := (
∂1φ

∣∣ ∂2φ
)

and A(φ) :=∇φT ∇φ. (4)

Note that ∇φ is field of 3 × 2 matrices whose column vectors are the partial derivatives of φ
and that A(φ) is a field of 2×2 positive-definite symmetric matrices whose components are the
covariant components of the first fundamental form associated with the immersion φ.

Given an immersion φ :ω→R3 of class C 1 such that the unit vector field ν(φ) :ω→R3 is also
of class C 1, we let

∇ν(φ) = (
∂1ν(φ)

∣∣ ∂2ν(φ)
)

and B (φ) :=∇φT ∇ν(φ). (5)

Note that ∇ν(φ) is field of 3×2 matrices whose column vectors are the partial derivatives of the
vector field ν(φ) and that B (φ) is a field of 2×2 symmetric matrices whose components are the
covariant components of the second fundamental form associated with the immersion φ.

The above definitions and notations apply as well to immersions φ : ω → R3 and their
associated unit vector fields ν(φ) : ω → R3 that are both of class C 1 up to the boundary of ω,
or of class W 1, p in ω, 1 < p <∞. This being the case, we let

C 1
+

(
ω;R3) := {

φ ∈C 1 (
ω;R3) ;

∣∣∂1φ∧∂2φ
∣∣> 0 in ω, ν(φ) ∈C 1 (

ω;R3)} (6)

and

W 1, p
+

(
ω;R3) := {

φ ∈W 1, p (
ω;R3) ;

∣∣∂1φ∧∂2φ
∣∣> 0 a.e. in ω, ν(φ) ∈W 1, p (

ω;R3)} . (7)

The objective of this Note is to indicate how to establish a nonlinear Korn inequality with an
explicit estimate of the constant that appears in it for mappingsφ ∈W 1, p

+ (ω;R3) andθ ∈C 1+(ω;R3);
see Theorem 1 below. We will show in particular that the estimate for the constant depends
on θ only via two scalar parameters, denoted ρ and δ in what follows, which are related to the
assumption that θ is an immersion such that θ and ν(θ) are continuously differentiable vector
fields over ω.

Note that the nonlinear Korn inequality of Theorem 1 constitutes an improvement, when
n = 3, over two previous results by the authors about hypersurfaces in Rn , n > 3: see [7,
Theorem 3.1 and Lemma 3.2], or [6, Lemma 2].

The definition of the constant Cω in the next statement is justified by relations (1)-(2) in
Section 1.

Theorem 1. Given any domain ω ⊂ R2 and any real numbers p > 1, 1 > ρ > 0 and δ > 0, there
exists a constant C =C (ω, p,ρ,δ) such that

inf
R ∈O3+

(∥∥ν(φ)−Rν(θ)
∥∥

Lp (ω) +
∥∥∇φ−R∇θ∥∥

Lp (ω) +
∥∥∇ν(φ)−R∇ν(θ)

∥∥
Lp (ω)

)
6C

∥∥∥∥∥ inf
R ∈O3+

(∣∣ν(φ)−Rν(θ)
∣∣+ ∣∣∇φ−R∇θ∣∣+ ∣∣∇ν(φ)−R∇ν(θ)

∣∣)∥∥∥∥∥
Lp (ω)

6C
p

3
(∥∥A(φ)1/2 − A(θ)1/2∥∥

Lp (ω) +
∥∥A(φ)−1/2B (φ)− A(θ)−1/2B (θ)

∥∥
Lp (ω)

)
for all mappings φ ∈W 1,p

+ (ω;R3) and θ ∈C 1
ρ,δ,µ(ω;R3), where

µ> 0 is any real number such that µ6
ρ11

468(1+Cω)
,

Cω> 1 is any constant such that distω
(
y, ỹ

)
6Cω

∣∣y − ỹ
∣∣ for all y, ỹ ∈ω,
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and

C 1
ρ,δ,µ

(
ω;R3) :={
θ ∈C 1

+
(
ω;R3) ; inf

y ∈ω
∣∣∂1θ(y)∧∂2θ(y)

∣∣> ρ, sup
y ∈ω

|∇θ(y)|6 1

ρ
, sup

y ∈ω
|∇ν(θ)(y)|6 1

ρ
,

sup{
y, ỹ ∈ω,
|y − ỹ |6 δ

∣∣∇θ(y)−∇θ(ỹ)
∣∣6µ, sup{

y, ỹ ∈ω,
|y − ỹ |6 δ

∣∣∇ν(θ)(y)−∇ν(θ)(ỹ)
∣∣6µ}

.

The proof of the Theorem 1 is sketched in Section 3 below; the details are given in [9].
The restriction in Theorem 1 that θ belongs to the subset C 1

ρ,δ,µ(ω;R3) of the set C 1+(ω;R3),

rather than to the set C 1+(ω;R3) itself, is essential (i.e., not merely an artefact of the proof).
However, this inconvenient is alleviated by the fact that, as ρ → 0+ and δ → 0+, the subset
C 1
ρ,δ,µ(ω;R3) becomes as large in C 1+(ω;R3) as one wants. More specifically, for each µ> 0,

C 1
+

(
ω;R3)= lim

ρ→0+

(
lim
δ→0+

C 1
ρ,δ,µ

(
ω;R3)) ,

where the limits above are defined as the union of an increasing sequence of sets.

3. Sketch of the proof of Theorem 1

The proof is broken for clarity into six steps, numbered (i) to (vi).

Proof. As in the statement of the Theorem 1, let there be given a domain ω ⊂ R2, a constant Cω

such that

distω(y, ỹ)6Cω

∣∣y − ỹ
∣∣ for all y, ỹ ∈ω,

four real numbers p > 1, 1> ρ > 0, δ> 0, µ> 0, and two mappings

θ ∈C 1
ρ,δ,µ

(
ω;R3) and φ ∈W 1, p

+
(
ω;R3) .

Then let λ := ρ/3, η := 13µρ−8/3, ε := ρ6/3, let Ωε := ω× (−ε,ε), and let Θ : Ωε → R3 and
Φ :Ωε→R3 be the mappings defined by

Θ(x) := θ(y)+x3ν(θ)(y) for all x = (y, x3) ∈Ωε

and

Φ(x) :=φ(y)+x3ν(φ)(y) for almost all x = (y, x3) ∈Ωε.

Note that the above definition of the constants λ, η and ε is justified by the estimates established
in Step (iv) below.

Step (i). There exists a constant C1(p,ρ) > 0 such that

inf
R ∈O3+

‖∇Φ−R∇Θ‖Lp (Ωε)

>C1(p,ρ) inf
R ∈O3+

(∥∥ν(φ)−Rν(θ)
∥∥

Lp (ω) +
∥∥∇φ−R∇θ∥∥

Lp (ω) +
∥∥∇ν(φ)−R∇ν(θ)

∥∥
Lp (ω)

)
.

The proof of this inequality relies on Clarkson’s inequalities in the space Lp (Ωε) (see, e.g.,
Adams [1, Theorem 2.28]) and follows an argument previously used in Ciarlet, Malin & Mar-
dare [4, Proof of Theorem 4.2].
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Step (ii). There exists a constant C2(p,ρ) > 0 such that∥∥∥∥∥ inf
R ∈O3+

|∇Φ−R∇Θ|
∥∥∥∥∥

Lp (Ωε)

6C2(p,ρ)

∥∥∥∥ inf
R ∈O3+

(∣∣ν(φ)−Rν(θ)
∣∣+ ∣∣∇φ−R∇θ∣∣+ ∣∣∇ν(φ)−R∇ν(θ)

∣∣)∥∥∥∥
Lp (ω)

.

The proof of this inequality uses either Jensen’s inequality if p > 2, or the inequality (a + b
+ c)p/2 6 ap/2 +bp/2 + cp/2 if p 6 2 for some appropriate nonnegative real numbers a,b and c,
followed by an appropriate application of Fubini’s theorem.

Step (iii). The following assertions hold:

A(θ) ∈C 0 (
ω;S2

>
)

, A(θ)−1 ∈C 0 (
ω;S2

>
)

, B (θ) ∈C 0 (
ω;S2) , Θ ∈C 1

(
Ωε;R3

)
,

and

A(φ)1/2 ∈ Lp (
ω;S2

>
)

, A(φ)−1/2B (φ) ∈ Lp (
ω;M2) , Φ ∈W 1,p (

Ωε;R3) .

These assertions are straightforward generalisations of similar ones established in Ciarlet,
Gratie & Mardare [3] for p = 2, and for this reason their proof is omitted.

Step (iv). The mappingΘ satisfies the following properties:

det∇Θ(x)>λ and |∇Θ(x)|6 1

λ
for all x ∈Ωε,

and

|∇Θ(x)−∇Θ(x̃)|6 η for all x, x̃ ∈Ωε such that |x − x̃|6 δ.

Using the estimates in terms of ρ of the partial derivatives of θ and ν(θ) appearing in the defi-
nition of the set C 1

ρ,δ,µ(ω;R3) (see the statement of Theorem 1), we first deduce from Weingarten’s
equations that

|∇Θ(x)|6 7

3ρ
and det∇Θ(x)>

11ρ

18
for all x = (y, x3) ∈Ωε,

then we deduce from the definition of the vector field ν(θ) in terms of the partial derivatives of θ
(see relation (3)) that ∣∣ν(y)−ν(ỹ)

∣∣6 3

ρ8

∣∣∇θ(y)−∇θ(ỹ)
∣∣ for all y, ỹ ∈ω.

Combined with the definition of the mapping Θ in terms of θ and the definition of the
parameter ε in terms of ρ, the last inequality implies that, for each x = (y, x3) ∈ Ωε and each
x̃ = (ỹ , x̃3) ∈Ωε,

|∇Θ(x)−∇Θ(x̃)|6 ∣∣∇θ(y)−∇θ(ỹ)
∣∣+ε ∣∣∇ν(y)−∇ν(ỹ)

∣∣+ ∣∣ν(y)−ν(ỹ)
∣∣

6
(
1+ 3

ρ8

)∣∣∇θ(y)−∇θ(ỹ)
∣∣+ ρ6

3

∣∣∇ν(y)−∇ν(ỹ)
∣∣ .

Assume next that x and x̃ satisfy |x − x̃|6 δ, so that, in particular, |y − ỹ |6 δ. Then we infer from
the definition of the space C 1

ρ,δ,µ(ω;R3) and from the previous estimate that

|∇Θ(x)−∇Θ(x̃)|6
(
1+ 3

ρ8 + ρ6

3

)
µ6

13µ

3ρ8 .
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Step (v). Assume that the given constantµ> 0 satisfiesµ6 ρ11

468(1+Cω) . Then there exists a constant
C3(ω, p,ρ,δ) depending only on ω, p,ρ,δ such that

inf
R ∈O3+

‖∇Φ−R∇Θ‖Lp (Ωε)6C3(ω, p,ρ,δ)

∥∥∥∥∥ inf
R ∈O3+

|∇Φ−R∇Θ|
∥∥∥∥∥

Lp (Ωε)

. (8)

First, the inequalities established in (iv) imply that the mappingΘ belong to the set:

C 1
λ,δ,η

(
Ωε;R3

)

:=

Θ ∈C 1
(
Ωε;R3

)
; inf

x∈Ωε
det∇Θ(x)>λ, sup

x∈Ωε
|∇Θ(x)|6 1

λ
, sup{

x, x̃ ∈Ωε,
|x − x̃|6 δ

|∇Θ(x)−∇Θ(x̃)|6 η

 .

Secondly, by (iii),

Φ ∈W 1, p (
Ωε;R3) .

Thirdly, the definition of the setΩε in terms of ω, the definition of the geodesic distance inΩε

(see relation (1)), and the definition of the constant Cω (see the statement of Theorem 1), together
show that, for each x = (y, x3) ∈Ωε and each x̃ = (ỹ , x̃3) ∈Ωε,

distΩε (x, x̃) ≤ distω(y, ỹ)+|x3 − x̃3|6Cω

∣∣y − ỹ
∣∣+|x3 − x̃3|6 (1+Cω) |x − x̃| .

Fourthly, the assumption on µ made in (v) implies that

η6
λ3

4(1+Cω)
.

The four observations above together imply that the assumptions of [8, Theorem 1(a)] are
satisfied by the domain Ωε and by the mappings Θ and Φ from Ωε into R3. Thus inequality (8)
holds as a consequence of this theorem.

Step (vi). Combining the three inequalities established in steps (i), (ii) and (v) above yields the
inequality

inf
R ∈O3+

(∥∥ν(φ)−Rν(θ)
∥∥

Lp (ω) +
∥∥∇φ−R∇θ∥∥

Lp (ω) +
∥∥∇ν(φ)−R∇ν(θ)

∥∥
Lp (ω)

)
6C

∥∥∥∥∥ inf
R ∈O3+

(∣∣∇φ−R∇θ∣∣+ ∣∣ν(φ)−Rν(θ)
∣∣+ ∣∣∇ν(φ)−R∇ν(θ)

∣∣)∥∥∥∥∥
Lp (ω)

,

where C := (C1(p,ρ))−1C2(p,ρ)C3(ω, p,ρ,δ). This establishes the first inequality of Theorem 1.

Using the polar decomposition of the 3×3 matrix fields

(∇θ|ν(θ)) and
(∇φ∣∣ν(φ)

)
and a method similar to one used in the proof of [7, Theorem 3.1], we next show that the following
inequality holds almost everywhere in ω:

inf
R ∈O3+

(∣∣ν(φ)−Rν(θ)
∣∣2 + ∣∣∇φ−R∇θ∣∣2 + ∣∣∇ν(φ)−R∇ν(θ)

∣∣2
)

6
∣∣A(φ)1/2 − A(θ)1/2∣∣2 + ∣∣A(φ)−1/2B (φ)− A(θ)1/2B (θ)

∣∣2
.
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Consequently,∥∥∥∥∥ inf
R ∈O3+

(∣∣ν(φ)−Rν(θ)
∣∣+ ∣∣∇φ−R∇θ∣∣+ ∣∣∇ν(φ)−R∇ν(θ)

∣∣)∥∥∥∥∥
Lp (ω)

6
p

3
(∥∥A(φ)1/2 − A(θ)1/2∥∥

Lp (ω) +
∥∥A(φ)−1/2B (φ)− A(θ)−1/2B (θ)

∥∥
Lp (ω)

)
.

This establishes the second inequality of Theorem 1. �
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