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Abstract. In this note we show that a sharp rigidity estimate and a sharp Korn’s inequality for matrix-
valued fields whose incompatibility is a bounded measure can be obtained as a consequence of a Hodge
decomposition with critical integrability due to Bourgain and Brezis.

Résumé. Dans cette note, nous démontrons qu’une estimée de rigidité et une inégalité de Korn pour des
champs avec des valeurs matricielles dont l’incompatibilité est une mesure bornée peuvent être obtenues
comme conséquence d’une décomposition de Hodge avec intégrabilité critique dû à Bourgain et Brezis.
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1. Introduction

The celebrated rigidity estimate of Friesecke, James, and Müller [8, 9] is a fundamental tool
for the analysis of variational, geometrically nonlinear models in elasticity. Indeed it allows to
obtain compactness of the deformation gradient (and therefore, for example, linearization or
dimension-reduction results) when the elastic energy has a degeneracy due to frame indifference.
The linear counterpart of this estimate is the classical Korn inequality, which permits to deal with
problems in linear elasticity where the energy, due to the approximation of the frame indifference,
does not control the antisymmetric part of the displacement gradient, the so called infinitesimal
rotations.

In the presence of plastic deformations, and then beyond the elastic regime mentioned above,
the variational models should account for plastic slips that occur at microscopic scale and for the
presence of topological defects which induce elastic distortion. Therefore, the relevant variable is
not the gradient of a deformation but a more general matrix-valued field, the elastic strain, which
may not be a gradient and may have a non trivial curl, possibly concentrated on low-dimensional
sets.

This framework calls for a version of the rigidity result, and of its linear counterpart, for fields
that may be incompatible, in the sense that are not gradients, but for which one knows that the
curl is a bounded measure. Such results do not seem to be available in the literature in dimension
greater than two, and are stated in Theorems 1 and 2.

In the sequel, given a matrix-valued function β ∈ L1(Ω;Rn×n), Curlβ denotes the tensor-
valued distribution whose rows are the curl, in the sense of distributions, of the rows of β, in the
sense that Curlβi j k := ∂kβi j −∂ jβi k , moreover M (Ω;Rk ) denotes the space of Radon measures
in Ω with values in Rk . In dimension 3, Curlβ can as usual be identified with a matrix-valued
distribution αi l :=∑

j ,k εl j k Curlβi j k . The natural space is then the one obtained by the Sobolev-
conjugate exponent 1∗ := n/(n −1).

Theorem 1. Given an open, bounded, connected, and Lipschitz setΩ inRn , with n ≥ 2, there exists
a constant C =C (n,Ω) > 0 such that for every β ∈ L1(Ω; Rn×n) with Curlβ ∈M (Ω; Rn×n×n), there
exists a rotation R ∈ SO(n) such that

∥∥β−R
∥∥

L1∗ (Ω) ≤C
(∥∥dist(β,SO(n))

∥∥
L1∗ (Ω) +

∣∣Curlβ
∣∣ (Ω)

)
. (1)

Theorem 2. Given an open, bounded, connected, and Lipschitz setΩ inRn , with n ≥ 2, there exists
a constant C = C (n,Ω) > 0 such that for every β ∈ L1(Ω;Rn×n) with Curlβ ∈ M (Ω;Rn×n×n) there
exists an antisymmetric matrix A such that

∥∥β− A
∥∥

L1∗ (Ω) ≤C
(∥∥β+βT ∥∥

L1∗ (Ω) +
∣∣Curlβ

∣∣ (Ω)
)

. (2)

In the above results |Curlβ|(Ω) denotes the total variation of the measure Curlβ. In the case
when Curlβ is absolutely continuous with respect to the Lebesgue measure it is simply given
by the L1 norm of Curlβ. We remark that the main point in this estimate is that it provides an
estimate with the total variation and therefore allows for concentrated incompatibilities, which
correspond to concentration of crystal defects. Korn’s inequalities with incompatibility involving
the Lp norm of Curlβ, with p > 1, instead of the total variation, can be found in [15] and the
references therein.

One can see Theorem 2 as a a linearization of Theorem 1. Indeed, it could be proven that way,
using a suitable density argument to reduce to fields β ∈ L∞. This procedure is normally not used
in the case that β is a gradient, as the linear result is a key ingredient in the proof of the nonlinear
rigidity estimate.
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In 2 dimensions we have 1∗ = 2 and Korn and rigidity estimates for incompatible field
(Theorems 2 and 1 with n = 2) have been obtained in [10, Theorem 11] and [16, Theorem 3.3],
respectively. A key ingredient in the proof is an interpolation inequality due to Bourgain and
Brezis which provides an estimate of the H−1 norm of a field in terms of the L1 norm and the
H−2 norm of its divergence, [2].

In higher dimension a recent result by Lauteri and Luckhaus, [14], shows that the rigidity
estimate of Theorem 1 can be obtained in the spaces Lp with p < 1∗ and the Lorentz space L1∗,∞,
but their results do not cover the case L1∗ which has the natural scaling.

Here, we show that the result in dimension three and above, Theorems 1 and 2, can be
obtained very easily via Hodge decomposition using a sharp regularity result due to Bourgain
and Brezis for the div-curl system [1, 2] (see also [13] and [18]) in the case that Ω is a cube, and
then generalized to Lipschitz domains using a Whitney-type argument.

A similar Hodge decomposition argument had been used in the subcritical case in [4]. We had
used the Bourgain–Brezis regularity result for the div-curl system to show existence of plastic
strain in the presence of dislocations in [6]. After this paper was submitted, a related argument
has been used in [11] to obtain similar rigidity estimates with zero boundary data or on cubes for
other differential operators, including the deviatoric strain.

2. Proof of the results for n ≥ 3

Lemma 3. Let n ≥ 3 and Y ∈ L1(Q; Rn) be such that divY = 0 distributionally and Y n = 0 on ∂Q.
Then

‖Y ‖L1∗ (Q) ≤ c(n)‖curlY ‖L1(Q) . (3)

Here and below Q := (0,1)n ; the assumption on Y means that extending Y by zero to Rn we
obtain a divergence-free field.

We recall that this assertion does not hold for n = 2, as one can see with curlY = δx0 for some
x0 ∈ Q, see for example [1, Remark 2]. Indeed, the proof of Theorem 1 and Theorem 2 for n = 2
given in [10, Theorem 11] and [16, Theorem 3.3] is different, although it also uses in a crucial way
the construction by Bourgain and Brezis.

We remark that for n = 3 this implies that for every f ∈ L1(Ω; R3), with div f = 0, there exists a
unique solution Z ∈ L3/2(Q; R3) of the system

div Z = 0 in Q,

curl Z = f in Q,

Z ·n = 0 on ∂Q

(4)

and it satisfies

‖Z‖L3/2(Q) ≤C‖ f ‖L1(Q) (5)

for some constant independent on f . By an approximation argument it follows that the same
result holds for measures, i.e., f ∈ M (Q; R3), with div f = 0 in the sense of distributions. By [3,
Theorem 4.1] this result can be extended to smooth bounded sets Ω ⊂ Rn . This argument was
used for the study of geometrically linear dislocations in [6].

Proof. By density, it suffices to prove the bound for regular fields Y (one can reflect Y across all
boundaries and then mollify). Let X ∈ Ln(Q; Rn). By [2, Corollary 18’] there are ϕ ∈ W 1,n(Q) and
γ ∈W 1,n

0 ∩L∞(Q;Rn×n) such that γ+γT = 0, X = Dϕ+divγ, and∥∥ϕ∥∥
W 1,n (Q) +

∥∥γ∥∥
L∞(Q) +

∥∥γ∥∥
W 1,n (Q) ≤ c(n)‖X ‖Ln (Q). (6)
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We estimate∫
Q

Y ·X dx =
∫

Q
Y ·Dϕ dx +

∫
Q

Y ·divγ dx =
∫
∂Q

Y ·γn dH n−1 −
∫

Q
DY ·γ dx

=−1

2

∫
Q

(
DY −DY T ) ·γd x =−1

2

∫
Q

curlY ·γ dx

≤ 1

2
‖curlY ‖L1(Q)

∥∥γ∥∥
L∞(Q) ≤ c(n)‖curlY ‖L1(Q) ‖X ‖Ln (Q) .

(7)

�

Proof of Theorem 1. To simplify notation, we write s := 1∗ = n/(n−1) and denote by c a constant
that depends only on the spatial dimension n, and that may change from line to line. It suffices
to prove the assertion if the right-hand side is finite.

First we prove the result in the case thatΩ=Q = (0,1)n .
By density it suffices to prove the assertion for β smooth. Indeed, it is sufficient to extend

β by reflection and then to mollify. We define u ∈ W 2,1(Q;Rn) as the solution of ∆u = divβ in
Q, ∂nu = βn on ∂Q, and set Y := β−Du. Since divY = 0, Y n = 0 on ∂Q, and curlY = curlβ,
application of Lemma 3 to each row of Y yields

‖Y ‖Ls (Q) ≤ c
∥∥curlβ

∥∥
L1(Q) . (8)

Therefore, since Du =β−Y ,

‖dist(Du,SO(n))‖Ls (Q) ≤
∥∥dist

(
β,SO(n)

)∥∥
Ls (Q) +‖Y ‖Ls (Q)

≤∥∥dist
(
β, SO(n)

)∥∥
Ls (Q) + c

∥∥curlβ
∥∥

L1(Q) .
(9)

We then use the geometric rigidity estimate by Friesecke, James, and Müller [8, 9] (see also [5]
for the version in Lp ) which states that for any bounded Lipschitz connected domain Ω and any
p ∈ (1,∞) there is a constant c = c(Ω,n, p) such that for any u ∈ W 1, p (Ω; Rn) there is R ∈ SO(n)
such that

‖Du −R‖Lp (Ω) ≤ c ‖dist(Du,SO(n))‖Lp (Ω) (10)

and obtain the assertion. By scaling invariance, we have shown that for any cube Qr := x∗
+ (−r,r )n and any β : Qr →Rn×n there is R ∈ SO(n) such that∥∥β−R

∥∥
Ls (Qr ) ≤ c

(
‖dist(Du,SO(n))‖Ls (Qr ) +

∥∥curlβ
∥∥

L1(Qr )

)
. (11)

We now deal with a generic bounded Lipschitz connected set Ω. We consider a Whitney
covering ofΩ by countably many cubes Q j := x j + (−r j ,r j )n with finite overlap, so that

χΩ ≤∑
j
χQ̂ j ≤

∑
j
χQ j ≤ cχΩ, (12)

where

Q̂ j := x j +
(
−1

2
r j ,

1

2
r j

)n

,

and such that r j ≤ dist(Q j ,∂Ω) ≤ cr j , see for example [17, Section VI.1] or [7, Section 6.5].
Condition (12) states that the smaller cubes cover the domain Ω and the bigger ones still have
finite overlap. This permits to construct a partition of unity ϕ j ∈ C∞

c (Q j ) subordinated to the
cubes Q j , with

∑
j ϕ j = 1 inΩ and such that |Dϕ j | ≤ c/r j .

We apply the estimate (11) on each cube Q j and obtain rotations R j ∈ SO(n). If Q j ∩Qk 6= ;,
then by a triangular inequality we obtain∫

Q j ∩Qk

∣∣R j −Rk
∣∣s dx ≤ c

∫
Q j ∩Qk

∣∣β−R j
∣∣s dx + c

∫
Q j ∩Qk

∣∣β−Rk
∣∣s dx. (13)

We define R :Ω→Rn×n by R :=∑
j ϕ j R j , and observe that∥∥β−R

∥∥s
Ls (Ω) ≤ c

∑
j

∥∥β−R j
∥∥s

Ls (Q j ) . (14)
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From
∑

j ϕ j = 1 we obtain
∑

j Dϕ j = 0 onΩ, so that

DR =∑
j

Dϕ j R j =
∑

j
Dϕ j

(
R j −β

)
. (15)

Recalling that dist(Q j ,∂Ω) ≤ cr j and (12),∫
Ω

dists (x,∂Ω) |DR|s dx ≤ c
∑

j

∫
Q j

r s
j

∣∣Dϕ j
∣∣s ∣∣β−R j

∣∣s dx ≤ c
∑

j

∫
Q j

∣∣β−R j
∣∣s dx. (16)

Since (11) holds in each cube Q j ,∫
Ω

dists (x,∂Ω) |DR|s dx ≤ c
∑

j

[∥∥dist
(
β,SO(n)

)∥∥s
Ls (Q j ) +

(∣∣curlβ
∣∣ (Q j )

)s
]

≤ c
∥∥dist

(
β,SO(n)

)∥∥s
Ls (Ω) + c

(∣∣curlβ
∣∣ (Ω)

)s−1 ∑
j

∣∣curlβ
∣∣ (Q j )

≤ c
∥∥dist

(
β,SO(n)

)∥∥s
Ls (Ω) + c

(∣∣curlβ
∣∣ (Ω)

)s .

(17)

By the weighted Poincaré inequality [12, Theorem 8.8] there is a matrix R∗ ∈Rn×n such that

‖R −R∗‖s
Ls (Ω) ≤ c

∫
Ω

dists (x,∂Ω) |DR|s dx. (18)

Let now R̂ ∈ SO(n) be a matrix such that |R̂ −R∗| = dist(R∗,SO(n)). Then, recalling (14),

|Ω|1/s ∣∣R̂ −R∗
∣∣≤‖R∗−R‖Ls +∥∥R −β∥∥

Ls +
∥∥dist

(
β,SO(n)

)∥∥
Ls

≤c
∥∥dist

(
β,SO(n)

)∥∥
Ls (Ω) + c

∣∣curlβ
∣∣ (Ω).

(19)

�

Proof of Theorem 2. This follows by the same proof, replacing geometric rigidity in Ls , Equa-
tion (10), by Korn’s inequality in Ls , which states that for every bounded Lipschitz connected do-
main Ω and any p ∈ (1,∞) there is a constant c = c(Ω,n, p) such that for any u ∈ W 1, p (Ω; Rn)
there is R ∈ SO(n) such that

‖Du −R‖Lp (Ω) ≤ c
∥∥Du +DuT ∥∥

Lp (Ω) (20)

(see, for example, [5] and references therein). �
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