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1. Introduction: main results and applications

T. Ohsawa–K. Takegoshi established a remarkable extension theorem of holomorphic functions
defined on a bounded pseudoconvex domain in Cn with growth control in [13]. Since then, many
versions and variants of the L2 extension theorems have been studied (see [2,5,10,11,14,15], etc).
These results lead to numerous applications in algebraic geometry and complex analysis.

One interesting problem is to study the L2 extension theorem for jets. The first such result was
given by D. Popovici [14], which generalized the L2 extension theorems of Ohsawa–Takegoshi–
Manivel to the case of jets of sections of a line bundle over a weakly pseudoconvex Kähler
manifold. Then J.-P. Demailly [6] considered the extension from more general non reduced
varieties. Following a new method of B. Berndtsson–L. Lempert [1], G. Hosono [9] proved an L2

extension theorem for jets with optimal estimate on a bounded pseudoconvex domain in Cn (see
also [12]).
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The idea of considering variable denominators was first introduced by J. McNeal–D.
Varolin [11]. They obtained some results on weighted L2 extension of holomorphic top forms
with values in a holomorphic line bundle, where the weights used are determined by the variable
denominators. Recently, X. Zhou–L. Zhu [15] proved an L2 extension theorem for holomorphic
sections of holomorphic line bundles equipped with singular metrics on weakly pseudocon-
vex Kähler manifolds. Futhermore, they obtained optimal constants corresponding to variable
denominators.

The method of solving undetermined functions with ODEs was first used in [8, 17]. From then
on, a lot of spectacular works appear along this line, such as [7, 15, 16], etc. Several optimal L2

extension theorems have been proved in this process.
The main goal of this paper is to apply the methods of Zhou–Zhu [15] and Demailly [5] to L2

jet extension to slightly generalize the results obtained by Popovici [14]. As an application of our
main theorem, we also generalize Ohsawa–Takegoshi’s extension theorem [13] to a jet version
(see Corollary 2). In near future, we will try to formulate this work to ∂-closed high-degree jets on
a weakly pseudoconvex Kähler case under mixed positivity conditions, such as [3].

We make precise the setting for our work. Let X be an n-dimensional weakly pseudoconvex
manifold with Kähler metricω, and E a Hermitian holomorphic vector bundle of rank m ≥ 1 over
X . Assume that s ∈ H 0(X ,E) is transverse to the zero section. Set

Y := {
x ∈ X : s(x) = 0

}
.

Futhermore, let L be a holomorphic line bundle equipped with a smooth Hermitian metric
satisfying an appropriate positivity condition.

We denote by Λr,s T ∗
X the bundle of differential forms of bidegree (r, s) on X , and IY the sheaf

of germs of holomorphic functions on X which vanish on Y . For any integer k ≥ 0, let OX /I k+1
Y

be the nonlocally free sheaf of k-jets which are “transversal” to Y . Fix a point y ∈ X and a Stein
neighborhood U in X of y . Then this gives rise to a surjective morphism

H 0(U ,KX ⊗L) −→ H 0(U ,KX ⊗L⊗OX /I k+1
Y )

of local section spaces, and an arbitrary local lifting f̃ ∈ H 0(U ,KX ⊗L) of f . For any transversal
k-jet f ∈ H 0(U ,KX ⊗L⊗OX /I k+1

Y ) and any weight function ρ > 0 on U , the pointwise ρ-weighted
norm associated to the section s, was defined by [14, Definition 0.1.1]:

| f |2s,ρ, (k)(y) := | f̃ |2L(y)+ |∇1 f̃ |2L
|Λm(ds)|2

1
m

E ρ2(m+1)
(y)+·· ·+ |∇k f̃ |2L

|Λm(ds)|2
k
m

E ρ2(m+k)
(y),

and the L2
(k) weighted norm by:

‖ f ‖2
s,ρ, (k) =

∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω.

Here for i = 0, . . . ,k, ∇i f̃ is constructed by induction as the projection of the (1,0)-part

∇1,0(∇k f̃ ) ∈C∞(U ,KX ⊗L⊗S j−1N∗
Y /X ⊗T ∗

X )

of ∇(∇k f̃ ) with the associated Chern connection ∇ to C∞(U ,KX ⊗L ⊗ S j N∗
Y /X ), induced by the

surjective bundle morphism KX ⊗L⊗T ∗
X |Y → KX ⊗L⊗N∗

Y /X .
It is worthwhile to notice that the norm | f |2s,ρ,(k) of the k-jet f at the point y ∈ Y is independent

of the choice of the local lifting f̃ . Moreover, one has the following notations [14, Notation 0.1.3]:

(a) For a transversal k-jet f ∈ H 0(U ,KX ⊗ L ⊗OX /I k+1
Y ), denote ∇ j f := (∇ j f̃ )|U∩Y , for all

j = 0, . . . ,k and an arbitrary lifting f̃ ∈ H 0(U ,KX ⊗L) of f .
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(b) For every integer k ≥ 0, and every open set U ⊂ X , set

J k
U : H 0(U ,KX ⊗L) −→ H 0(U ,KX ⊗L⊗OX /I k+1

Y )

as the cohomology group morphism induced by the projection OX →OX /I k+1
Y .

We refer to [14, pp. 2–5] for more details about the notations and the construction of relevant
metrics on jets.

In [15, p. 136], Zhou–Zhu defined the variable denominators. Let R be the class of functions
defined by {

R ∈C∞(−∞,0] :
R > 0, R ′ ≤ 0,

∫ 0
−∞

1
R(t ) dt <+∞

and e t R(t ) is bounded above on (−∞,0]

}
.

Denote
∫ 0
−∞

1
R(t ) dt by CR . Notice that the function R(t ) equals to the function 1

cA (−t )e t defined just
before the main theorems in [7, p. 1143] when A = 0.

With such preparation, our main theorem is as follows.

Main Theorem 1. Let R be a function in R. On a weakly pseudoconvex n-dimensional Kähler
manifold (X ,ω), let L be a smooth Hermitian holomorphic line bundle, E a smooth Hermitian
holomorphic vector bundle of rank m ≥ 1, and s ∈ H 0(X ,E) a section transverse to the zero
section. Set

Y := {
x ∈ X : s(x) = 0

}
.

Assume also that, for an integer k ≥ 0, the (1,1)-form
p−1ΘL +(m+k)

p−1∂∂ log |s|2E involving the
curvature of L is semipositive on X \Y , and that there exists a continuous function α> 0 on X such
that on X \ Y ,

(i)
p−1ΘL + (m +k)

p−1∂∂ log |s|2E ≥α−1 {
p−1ΘE s, s}E

|s|2E
,

(ii) |s|E ≤ e−α.

Then for every relatively compact open subset Ω ⊂ X and every k-jet f ∈ H 0(X ,KX ⊗OX /I k+1
Y )

satisfying ∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω <+∞,

there exists F (k) ∈ H 0(Ω,KX ⊗L) such that J k
ΩF (k) = f and∫

Ω

|F (k)|2L
|s|2m

E R(m log |s|2E )
dVX ,ω ≤C (k)

m,R

∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω, (1)

where C (k)
m,R > 0 is a constant depending only on m,k,E ,R and supΩ ‖iΘ(L)‖.

Comparing the statement in [14, Main Theorem], one sees that only in the case of a compact
ambient manifold X , the jet extension F (k) and the final L2 estimate of it can be obtained over
the whole of X ; while in the general noncompact case, since the constant in his L2 jet estimate (2)
depends on supΩ ‖iΘ(L)‖, and then it seems difficult to obtain the jet extension and the final
estimate over X by extracting weak limit as c →∞, where Xc will be introduced later in Section 3.

Our Theorem 1 is a generalization of [14, Main Theorem], where α ≥ 1. In fact, if we take
R(t ) = ( t

2m )
2

on (−∞,−2m], and then (1) implies Popovici’s L2 jet estimate [14, p. 6]∫
Ω

|F (k)|2L
|s|2m

E (− log |s|)2
dVX ,ω ≤C (k)

m

∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω, (2)

where C (k)
m > 0 is a constant depending only on m,k,E , and supΩ ‖iΘ(L)‖.

Take R(t ) = e−t (then CR = 1) to get the following corollary as a generalization of the main
theorem in [13] to a jet version.
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Corollary 2. Let (X ,ω), L, E , s, Y be the same as in Theorem 1. Then for every relatively compact
open subsetΩ⊂ X , and every k-jet f ∈ H 0(X ,KX ⊗L⊗OX /I k+1

Y ) satisfying∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω <+∞,

there exists F (k) ∈ H 0(Ω, KX ⊗L) such that J k
ΩF (k) = f and∫

Ω
|F (k)|2LdVX ,ω ≤C (k)

m

∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω,

where C (k)
m > 0 is a constant depending only on m,k,E , and supΩ ‖iΘ(L)‖.

The following theorem is a special case of Theorem 1 for a bounded pseudoconvex open set
Ω⊂Cn . Denote the space of all plurisubharmonic functions onΩ by Psh(Ω).

Theorem 3. Let R be a function in R. Let Ω ⊂ Cn be a bounded pseudoconvex open set, and
Y ⊂ Ω a closed nonsingular subvariety defined by some section s ∈ H 0(Ω,E) of a Hermitian
holomorphic vector bundle E of rank m ≥ 1 with bounded curvature form. Set |s|E ≤ 1 on Ω.
Then for any relatively compact open subset Ω′ ⊂ Ω, any k ≥ 0 and any ϕ ∈ Psh(Ω), there exists
a constant C (k)

m,R > 0 depending only on E ,Ω,R and the modulus of continuity of ϕ, such that for

any holomorphic section of OΩ/I k+1
Y satisfying∫

Y

| f |2s,ρ, (k)

|Λm(ds)|2E
e−ϕdVY <+∞,

there exists a holomorphic function F (k) onΩ′ such that J k
Ω′F

(k) = f and∫
Ω′

|F (k)|2
|s|2m

E R(m log |s|2E )
e−ϕdVΩ′ ≤C (k)

m,R

∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
e−ϕdVY .

Even studying the special case Y = {z0} is quite interesting. In this case, we just take s(z) =
(diamΩ′)−1(z − z0), viewed as a section of the trivial vector bundle Ω′×Cn with |s| ≤ 1. The jet f
at z0 is then given by aα ∈C, |α| ≤ k, α= (α1, . . . ,αn). Obviously, one has∫

Y

| f |2s,ρ, (k)

|Λn(ds)|2 e−ϕ = e−ϕ(z0) · ∑
|α|≤k

|aα|2.

As a result, one obtains the following corollary.

Corollary 4. Let R be a function in R. Let Ω ⊂ Cn be a bounded pseudoconvex open set. Then
for any relatively compact open subset z0 ∈ Ω′ ⊂ Ω, any k ≥ 0 and any ϕ ∈ Psh(Ω), there exists a
constant C (k)

n,R > 0 depending only on R, and on the modulus of continuity of ϕ, such that for all
complex numbers aα, |α| ≤ k, there exists a holomorphic function f onΩ′ satisfying

f (z0) = a0,
∂α f

∂zα
(z0) = aα, 1 ≤ |α| ≤ k,∫

Ω′

| f |2
|z − z0|2nR

(
2n log

( |z−z0|
diamΩ′

)) e−ϕ(z)dVΩ′ (z) ≤
C (k)

n,R e−ϕ(z0)

(diamΩ′)2n

∑
|α|≤k

|aα|2.

Notation 5. Unless otherwise stated, we will always adopt the notations in Section 1 in the
latter sections and in particular, we will denote |s|E and |Λm(ds)|E simply by |s| and |Λm(ds)|,
respectively.
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2. Preliminaries for L2 extension

In this section, we present a few results to be used in the proof of our Theorem 1.

Lemma 6. Let X be a complex manifold, Z ⊆ X a (possibly singular) subvariety, and L a holo-
morphic line bundle on X . Suppose that u and f are L-valued forms on X with coefficients in L2

loc
such that ∂u = f on X \ Y (in the sense of currents). Then one has ∂u = f on X (also in the sense of
currents).

Proof. The proof is almost the same as [4, Lemma 6.9]. Notice that the line bundle L is locally
trivial. �

Lemma 7. Let X be a complete Kähler manifold possessing a non-necessarily complete Kähler
metric ω, and Q a Hermitian vector bundle over X . Assume that µ and A are bounded smooth
positive functions on X and put

B :=p−1
[
µΘQ −∂∂µ− A−1∂µ∧∂µ,Λ

]
,

where Λ := Λω is the dual Lefschetz operator. Suppose that δ ≥ 0 is a number such that B + δI
is semi-positive definite everywhere on Λn,q T ∗

X ⊗ Q for some q ≥ 1. Then given a form g ∈
L2(X ,Λn,q T ∗

X ⊗ Q) such that ∂g = 0 and
∫

X 〈(B +δI )−1g , g 〉Q dVX < +∞, there exists an ap-
proximate solution u ∈ L2(X ,Λn,q−1T ∗

X ⊗Q) and an error term h ∈ L2(X ,Λn,q T ∗
X ⊗Q) such that

∂u +p
δh = g and ∫

X

|u|2Q
µ+ A

dVX +
∫

X
|h|2Q dVX ≤

∫
X
〈(B +δI )−1g , g 〉Q dVX .

Proof. Lemma 7 appeared as [15, Lemma 3.2], which is modified from [5, Remark 3.2]. Demailly
presented the error term method therein aiming to overcome the lack of sufficient positivity to
solve ∂-equations. �

Lemma 8 (cf. [4, Theorem 1.5]). Let X be a Kähler manifold and Z ⊂ X an analytic subset. Assume
that Ω ⊂ X is a relatively compact open subset equipped with a complete Kähler metric. Then
Ω\ Z possesses a complete Kähler metric.

Lemma 9 (cf. [15, Lemma 3.9]). Let X be a complex manifold, and Q a Hermitian vector bundle
over X . Let

{ · , · }Q :Λp1,q1 T ∗
X ⊗Q ×Λp2,q2 T ∗

X ⊗Q −→Λp1+q2,q1+p2 T ∗
X

be the sesquilinear product which combines the wedge product (u, v) 7→ u ∧ v on scalar valued
forms with the Hermitian inner product on Q. Then for any smooth section s of Q and any smooth
section w of T ∗

X ⊗Q over X ,
p−1{w, s}Q ∧ {s, w}Q ≥ |s|2Q

p−1{w, w}Q .

3. Proof of Theorem 1

Without loss of generality, set CR = 1. Otherwise, one replaces R with CR R in the proof. We will
divide the proof into several steps.

Step 1. Constructing special weights and twist factors.

Recall that a complex manifold X is said to be weakly pseudoconvex if there exists a smooth
plurisubharmonic exhaustion function P over X . We shall focus on the relatively compact subset
Xc \ Y rather than working on X itself, where Xc = {

P < c
}

(c = 1,2, . . . , we choose P such that
X1 6= ;). Then Xc \Y (c = 1,2, . . .) is complete Kähler thanks to Lemma 8. For an arbitrary relatively
compact subsetΩ⊂ X , select some c such thatΩ⊂ Xc .
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From now on, the jet order k and c will be fixed during the proof.
Put β := m

m+k . Let ζ : (−∞,0) → (0,+∞) be a smooth strictly increasing function, and χ :

(−∞,0) → (0,+∞) a smooth strictly decreasing function. Assume that χ(t ) ≥−β·t
2 for t ∈ (−∞,0).

We will find more assumptions on ζ and χ in the proof, by which we will get explicit expressions
of ζ and χ in the end of this section.

Let a ∈ (0,1) and put σε = (m + k) log(|s|2 + ε2)− a and σ = (m + k) log |s|2 − a. Then β ·σε =
m log(|s|2 + ε2) −β · a and β ·σ = m log |s|2 −β · a. As |s| ≤ e−α on X \ Y , there exists a positive
number εa ∈ (0,1) such that σε ≤−2(m +k)α− a

2 on Xc \ Y for ε ∈ (0,εa).
The holomorphic line bundle L is equipped with a Hermitian metric hL , which is written

locally as e−ϕL for some smooth function with respect to a local holomorphic frame of L. Let
La,ε denote the line bundle L on Xc \ Y equipped with the new metric ha,ε := e−ϕL−σ−ζ(σε).

Set τε = χ(σε) and let Aε be a smooth positive function on Xc , which will be determined later.
Set Bε = [Θε,Λ] on Xc \ Y , where

Θε := τε
p−1ΘLa,ε −

p−1∂∂τε−
p−1

∂τε∧∂τε
Aε

.

Set

νε = {D ′s, s}

|s|2 +ε2 . (3)

We want to find suitable ζ,χ and Aε such that on Xc \ Y ,

Θε ≥ mε2

|s|2
p−1νε∧νε. (4)

Easy computation yields

Θε =χ(σε)
(p−1∂∂ϕL +

p−1∂∂σ
)+ (

χ(σε)ζ′(σε)−χ′(σε)
)p−1∂∂σε

+
(
χ(σε)ζ′′(σε)−χ′′(σε)− (χ′(σε))2

Aε

)p−1∂σε∧∂σε
=χ(σε)

(p−1ΘL + (m +k)
p−1∂∂ log |s|2)+ (

χ(σε)ζ′(σε)−χ′(σε)
)p−1∂∂σε

+
(
χ(σε)ζ′′(σε)−χ′′(σε)− (χ′(σε))2

Aε

)p−1∂σε∧∂σε.

Assuming the equalities

χ(σε)ζ′(σε)−χ′(σε) =β (5)

and

χ(σε)ζ′′(σε)−χ′′(σε)− (χ′(σε))2

Aε
= 0 (6)

hold, we can see that

Θε ≥χ(σε)
(p−1ΘL + (m +k)

p−1∂∂ log |s|2)+βp−1∂∂σε (7)

on Xc \Y . On the other hand, by (6) one can also assume that Aε = η(σε) for some smooth function
η : (−∞,0) → (0,+∞) such that

χζ′′−χ′′− (χ′)2

η
= 0. (8)

As Lemma 9 gives

|s|2p−1{D ′s,D ′s} ≥p−1{D ′s, s}∧ {s,D ′s},
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we obtain that on Xc \ Y ,

p−1∂∂σε = (m +k)
p−1{D ′s,D ′s}

|s|2 +ε2 − (m +k)
p−1{D ′s, s}∧ {s,D ′s}

(|s|2 +ε2)2 − (m +k)
p−1{ΘE s, s}

|s|2 +ε2

≥ (m +k)ε2

|s|2
p−1{D ′s, s}∧ {s,D ′s}

(|s|2 +ε2)2 − (m +k)
p−1{ΘE s, s}

|s|2 +ε2

= (m +k)ε2

|s|2
p−1νε∧νε− (m +k)

p−1{ΘE s, s}

|s|2 +ε2 .

Then it follows from (7) that on Xc \ Y ,

Θε ≥χ(σε)
(p−1ΘL + (m +k)

p−1∂∂ log |s|2)− m
p−1{ΘE s, s}

|s|2 +ε2 + mε2

|s|2
p−1νε∧νε.

Since χ(σε) ≥ −β·σε
2 ≥ mα by the assumption χ(t ) ≥ −β·t

2 , it follows from the curvature
conditions on X \ Y in Theorem 1 that

χ(σε)
(p−1ΘL + (m +k)

p−1∂∂ log |s|2)− m
p−1{ΘE s, s}

|s|2 +ε2

=χ(σε)
(p−1ΘL + (m +k)

p−1∂∂ log |s|2)− mα|s|2
|s|2 +ε2

p−1{ΘE s, s}

α|s|2

≥ mα|s|2
|s|2 +ε2

(p−1ΘL + (m +k)
p−1∂∂ log |s|2 − {

p−1ΘE s, s}

α|s|2
)

≥ 0

on Xc \ Y . Hence, one gets (4) as expected.
As a result,

Bε ≥
[

mε2

|s|2
p−1νε∧νε,Λ

]
= mε2

|s|2 Tν̄εT ∗
ν̄ε

(9)

on Xc \ Y as an operator on (n,1)-forms, where Tν̄ε denotes the operator νε ∧ · and T ∗
ν̄ε

is its
Hilbert adjoint operator.

Step 2. Solving ∂ on Xc with estimates.

With such preparation, we now argue by induction on k ≥ 0. The case k = 0 is a special case
of [15, Theorem 1.1]. Now, assume that the theorem has been proved for k −1, and we consider
the short exact sequence of sheaves

0 −→ Sk N∗
Y /X −→OX /I k+1

Y −→OX /I k
Y −→ 0.

Let J k−1
X f ∈ H 0(X ,KX ⊗ L ⊗ OX /I k

Y ) be the image of f ∈ H 0(X ,KX ⊗ L ⊗ OX /I k+1
Y ) under

the induced cohomology group morphism. By the induction hypothesis, there exists F (k−1) ∈
H 0(X ,KX ⊗L) such that

J k−1
X F (k−1) = J k−1

X f ,
∫

Xc

|F (k−1)|2L
|s|2mR(m log |s|2E )

dVX ,ω ≤C (k−1)
m,R

∫
Yc

| f |2s,ρ, (k−1)

|Λm(ds)|2 dVY ,ω, (10)

where C (k−1)
m,R > 0 is a constant as in the statement of Theorem 1 and Yc := Y ∩ Xc . Thus, the

image J k−1
X f − J k−1

X F (k−1) ∈ H 0(X ,KX ⊗L ⊗OX /I k
Y ) of f − J k

X F (k−1) ∈ H 0(X ,KX ⊗L ⊗OX /I k+1
Y )

vanishes. So we can view the jet f − J k
X F (k−1) as a global holomorphic section (on Y ) of the sheaf

KX ⊗L⊗Sk N∗
Y /X = KX ⊗L⊗Sk E∗

|Y .

Using the results in [14, p. 12], one can construct an extension f̃ ∈ C∞(X ,KX ⊗ L) of the
holomorphic k-jet f ∈ H 0(X ,KX ⊗L⊗OX /I k+1

Y ) by means of a partition of unity, satisfying

∂ f̃ = 0 on Y ,
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and

|∂ f̃ | =O(|s|k+1) in a neighbourhood of Y .

Set

G (k−1)
ε := θ

(
ε2

|s|2 +ε2

)
( f̃ −F (k−1)) ∈C∞(X ,KX ⊗L),

where 0 < ε< εa , and θ : R→ [0,1] is a C∞ function such that θ ≡ 0 on
(−∞, 1

3

]
, θ ≡ 1 on

[ 2
3 ,+∞)

,
and |θ′| ≤ 4 on R. Then it suffices to solve the equation

∂uε = ∂G (k−1)
ε , (11)

with the extra condition |uε|2
|s|2(m+k) ∈ L1

loc in a neighbourhood of Y . This condition guarantees that
uε, as well as all its jets of orders ≤ k, vanishes on Y .

By direct calculations, one has

∂G (k−1)
ε = g (1)

ε + g (2)
ε ,

where

g (1)
ε =− ε2

|s|2 +ε2 ·θ′
(

ε2

|s|2 +ε2

)
νε∧ ( f̃ −F (k−1)),

g (2)
ε = θ

(
ε2

|s|2 +ε2

)
∂( f̃ −F (k−1)).

Recall that νε is given in (3).
In this situation, g (2)

ε turns out to have no contribution in the limit since it converges uniformly
to 0 on every compact set when ε tends to 0. Actually, Supp(g (2)

ε ) ⊂ {|s| <p
2ε} and |g (2)

ε | =O(|s|k+1)
because of |∂ f̃ | =O(|s|k+1) in a neighbourhood of Y as we have previously shown.

Then ∫
Xc \Y

〈B−1
ε g (2)

ε , g (2)
ε 〉L |s|−2(m+k)dVX ,ω =O(ε),

provided that Bε is locally uniformly bounded below in a neighbourhood of Y . Otherwise, we
shall solve the approximate equation ∂u +p

δh = gε with δ > 0 small (see Lemma 7 and [5,
Remark 3.2] for more details). One can remove the extra error term

p
δh by putting δ→ 0 at the

end. Since there is no essential difficulty during this procedure, for the purpose of simplicity, we
will assume to have the desired lower bound for Bε and the estimate of g (2)

ε as above.
Next, we turn to estimate the term involving g (1)

ε on Xc \ Y . By (9),

〈B−1
ε g (1)

ε , g (1)
ε 〉La,ε ≤

|s|2
mε2 ·

∣∣∣∣θ′ ( ε2

|s|2 +ε2

)
ε2

|s|2 +ε2 ( f̃ −F (k−1))

∣∣∣∣2

La,ε

.

In [14, p. 17], Popovici showed that on every compact set,
|( f̃ −F (k−1))(εs,z ′)|2L

ε2k converges to

|∇k ( f − J k
X F (k−1))(z ′)|2L uniformly as ε → 0. Then using a partition of unity around Xc \ Y and

the Fubini theorem, we obtain∫
Xc \Y

〈
B−1
ε g (1)

ε , g (1)
ε

〉
La,ε

dVX ≤ 16ea

m

∫
Xc∩{

√
1
2 ε<|s|<

p
2ε}

ε2| f̃ −F (k−1)|2LdVX(|s|2 +ε2
)2 |s|2(m+k−1)

−→ 16ea

m
Cm,k

∫
Yc

∣∣∇k
(

f − J k
X F (k−1)

)∣∣2
L

|Λm(ds)|2 m+k
m

dVY ,ω (ε−→ 0),

where

Cm,k :=
∫

z∈Cm ,
√

1
2 ≤|z|≤

p
2

p−1Λm(dz)∧Λm(dz)

(|z|2 +1)2|z|2(m+k−1)



Sheng Rao and Runze Zhang 189

depends only on m and k. It may be worthwhile to note that
∣∣∇k

(
f − J k

X F (k−1)
)∣∣

L = | f −J k
X F (k−1)|L ,

where f − J k
X F (k−1) ∈ H 0(Y ,KX ⊗L⊗Sk N∗

Y /X ). Then, one has

∫
Xc \Y

〈B−1
ε g (1)

ε , g (1)
ε 〉La,εdVX ≤ 16ea

m
Cm,k

∫
Yc

|∇k ( f − J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY ,ω,

when ε is small enough. By using Lemma 7 with δ = 0, we can solve (11), i.e., there exists
uc,a,ε ∈ L2(Xc \ Y , KX ⊗La,ε) such that

∂uc,a,ε = ∂G (k−1)
ε = g (1)

ε + g (2)
ε

on Xc \ Y and

∫
Xc \Y

|uc,a,ε|2Le−σ−ζ(σε)

τε+ Aε
dVX ≤ 16ea

m
Cm,k

∫
Yc

|∇k ( f − J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY ,ω+O(ε). (12)

Since σ,ζ(σε),τε+ Aε are all bounded above on Xc for each fixed ε, the inequality (12) implies
that uc,a,ε ∈ L2(Xc ,KX ⊗L). As (11), (12) and Gk−1

ε is smooth, Lemma 6 gives that

∂uc,a,ε = ∂G (k−1)
ε = g (1)

ε + g (2)
ε (13)

extends across Y and

∫
Xc

|uc,a,ε|2Le−σ−ζ(σε)

τε+ Aε
dVX ≤ 16ea

m
Cm,k

∫
Yc

|∇k ( f − J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY ,ω+O(ε). (14)

The jet extension of f to Xc is then given by

F (k)
c,a,ε :=G (k−1)

ε −uc,a,ε+F (k−1).

Then F (k)
c,a,ε is holomorphic on Xc , thanks to (13), F (k−1) ∈ H 0(X ,KX ⊗L) as well as the ellipticity of

the operator ∂ in bidegree (n,0). So uc,a,ε is also smooth on Xc . Locally, near an arbitrary point of
Y , all partial derivatives of orders ≤ k of F (k)

c,a,ε are prescribed by f .
By the variant of Cauchy–Schwarz inequality, we have

〈κ1 +κ2 +κ3,κ1 +κ2 +κ3〉 ≤ 2〈κ1 +κ2,κ1 +κ2〉+2〈κ3,κ3〉
≤ 4〈κ1,κ1〉+4〈κ2,κ2〉+2〈κ3,κ3〉 (15)

for any inner product space (H , 〈 · , · 〉), κ1,κ2,κ3 ∈H .
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Then for some sufficiently small ε, R(β ·σε) ≤ R(β ·σ), R(m log |s|2) ≤ R(β ·σ), the induction
hypothesis (10), (14) and (15) give the estimate on the relatively compact open subset Xc ,∫

Xc

|F (k)
c,a,ε|2L

eβ·σR(β ·σ)
dVX (16)

≤ 4
∫

Xc

|uc,a,ε|2L
eβ·σR(β ·σ)

dVX +4
∫

Xc

|F (k−1)|2L
eβ·σR(β ·σ)

dVX +2
∫

Xc

|G (k−1)
ε |2L

eβ·σR(β ·σ)
dVX

≤ 4

(
sup

Xc

(τε+ Aε)eζ(σε)

R(β ·σε)

)∫
Xc

|uc,a,ε|2Le−β·σ−ζ(σε)

τε+ Aε
dVX

+4eβ·a
∫

Xc

|F (k−1)|2L
|s|2mR(m log |s|2)

dVX +2eβ·a
∫

Xc

θ( ε2

|s|2+ε2 )
2| f̃ −F (k−1)|2L

|s|2mR(m log |s|2)
dVX

≤ 4e(β−1)a

(
sup

Xc

(τε+ Aε)eζ(σε)

R(β ·σε)

)∫
Xc

|uc,a,ε|2Le−σ−ζ(σε)

τε+ Aε
dVX

+4eβ·a
∫

Xc

|F (k−1)|2L
|s|2mR(m log |s|2)

dVX +2C1 eβ·a
∫

Xc

1

|s|2mR(m log |s|2)
dVX

≤ 64eβ·a

m

(
sup

Xc

(τε+ Aε)eζ(σε)

R(β ·σε)

)
Cm,k

∫
Yc

|∇k ( f − J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY

+4eβ·a C (k−1)
m,R

∫
Yc

| f |2s,ρ, (k−1)

|Λm(ds)|2 dVY +C2

∫ 2m logε+C3

−∞
1

R(t )
dt +O(ε)

≤ eβ·a C ′(k)
m,R

∫
Yc

| f |2s,ρ, (k)

|Λm(ds)|2 dVY

+ 64eβ·a

m
Cm,k

∫
Yc

|∇k (J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY +C2

∫ 2m logε+C3

−∞
1

R(t )
dt +O(ε),

where C ′(k)
m,R = 64

m Cm,k + 4C (k−1)
m,R and C1,C2,C3 are all positive numbers independent of ε. Here

in (16), we also assume that

(τε+ Aε)eζ(σε)

R(β ·σε)
= 1 (17)

on Xc . We will solve (17) together with (5) and (8) in Step 4.

Step 3. Passing to the limits to get the final jet extension onΩ.

As supt≤0

(
e t R(t )

) < ∞, applying Montel’s theorem and (16) to extract a weak limit of{
F (k)

c,a,ε

}
ε>0

as ε → 0, we get a holomorphic L-valued n-form F (k)
c,a on Xc such that J k

Xc
F (k)

c,a = f
and ∫

Xc

|F (k)
c,a |2L

eβ·σR(β ·σ)
dVX ≤ eβ·a C ′(k)

m,R

∫
Yc

| f |2s,ρ, (k)

|Λm(ds)|2 dVY + 64eβ·a

m
Cm,k

∫
Yc

|∇k (J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY .

In other words,∫
Xc

|F (k)
c,a |2L

|s|2mR(m log |s|2 −β ·a)
dVX

≤C ′(k)
m,R

∫
Yc

| f |2s,ρ, (k)

|Λm(ds)|2 dVY + 64

m
Cm,k

∫
Yc

|∇k (J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY . (18)
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Since R is continuous decreasing on (−∞,0], supt≤0(e t R(t )) <∞, similarly as before, we use
Montel’s theorem and extract a weak limit of {F (k)

c,a }a>0 as a → 0, to obtain a holomorphic L-valued
n-form F (k)

c on Xc from (18) such that J k
Xc

F (k)
c = f and

∫
Xc

|F (k)
c |2L

|s|2mR(m log |s|2)
dVX ≤C ′(k)

m,R

∫
Yc

| f |2s,ρ, (k)

|Λm(ds)|2 dVY + 64

m
Cm,k

∫
Yc

|∇k (J k
X F (k−1))|2L

|Λm(ds)|2 m+k
m

dVY . (19)

As Popovici [14, Sections 0.4–0.6] has shown that the last term in the right-hand side of (19)
can be controlled uniformly, a slight modification of his proof in [14, Section 0.4] in terms of the
variable denominators introduced by [15, p. 136] can complete the proof of Main Theorem 1.
Indeed, one just needs to modify the first and second inequalities in [14, p. 22], respectively, as

∑
|α|=k |

∂αF (k−1)

∂z′α (0,z ′′)
α! |2e−2ϕ(0,z ′′)−2A|z ′′|2

|Λm(ds)(0, z ′′)|2 m+k
m

≤ Const ·2(m +k)

ρ2(m+k)
e2(ε(ρ)+Aρ2) sup

(z ′,z ′′)∈U j

|s(z ′, z ′′)|2mR(m log s(z ′, z ′′)2)

|Λm(ds)(0, z ′′)|2 m+k
m

×
∫

z ′∈B ′(0,ρ)

‖F (k−1)(z ′, z ′′)‖2

|s(z ′, z ′′)|2mR(m log s(z ′, z ′′)2)
dλ(z ′),

and ∫
Yc

|∇k (J k
X F (k−1))|2

|Λm(ds)|2 m+k
m

dVY ≤ Dm,k N M(c)
1

ρ2(m+k)
e2(ε(ρ)+Aρ2)

∫
Ω′

‖F (k−1)‖2

|s|2mR(m log |s|2)
dVX ,ω,

where

M(c) := sup
(z ′,z ′′)∈Ω′

|s(z ′, z ′′)|2mR(m log s(z ′, z ′′)2)

|Λm(ds)(0, z ′′)|2 m+k
m

.

and Dm,k := Const ·2(m + k). Notice that the smoothness of the function R on (−∞,0] ensures
that one can get the suprema on U j and Ω′, respectively. We refer to [14, Section 0.4] for more
explanations about the above notations.

Then as a result, we get a holomorphic L-valued n-form F (k)
c onΩ such that J k

ΩF (k)
c = f and

∫
Ω

|F (k)
c |2L

|s|2m
E R(m log |s|2E )

dVX ,ω ≤
∫

Xc

|F (k)
c |2L

|s|2m
E R(m log |s|2E )

dVX ,ω

≤C (k)
m,R

∫
Yc

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω

≤C (k)
m,R

∫
Y

| f |2s,ρ, (k)

|Λm(ds)|2E
dVY ,ω,

where C (k)
m,R > 0 is a constant depending only on m,k,E ,R and supΩ ‖iΘ(L)‖.

Step 4. Solving ordinary differential equations

We have already proved Theorem 1, provided that there exist appropriate χ,η,ζ satisfying
some assumptions. Now, we will come to use these assumptions about χ,η,ζ to get their explicit
expressions.
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Notice that (5), (8) and (17) are equivalent to the following system of ordinary differential
equations defined on (−∞,0):

χ(t )ζ′(t )−χ′(t ) =β, (20)

(χ(t )+η(t ))eζ(t ) = R(β · t ), (21)

(χ′(t ))2

χ(t )ζ′′(t )−χ′′(t )
= η(t ), (22)

where β = m
m+k . It is noteworthy that when k = 0 (and then β = 1), our system of ODEs

coincides with [15, (4.17), (4.18), (4.19)]. Moreover, we have assumed that ζ,χ and η are all
smooth on (−∞,0) and that ζ > 0,χ > 0,η > 0,ζ′ > 0,χ′ < 0 and χ(t ) ≥ −β·t

2 on (−∞,0). In the
proof of Theorem 1, we have assumed that CR = ∫ 0

−∞
1

R(t ) dt = 1. Hence, we get
∫ 0
−∞

1
R(β·t ) dt =

1
β

∫ 0
−∞

1
R(β·t ) d(β · t ) = 1

β .
Following the argument of solving undetermined functions with ODEs introduced in [15,

Section 4, pp. 151–153], we get

ζ=− log

(
1−β

∫ t

−∞
1

R(β · t1)
dt1

)
,

χ=
−β · t −β2

∫ 0
t (

∫ t2
−∞

1
R(β·t1) dt1)dt2

1−β∫ t
−∞

1
R(β·t1) dt1

,

η=
(
1−β

∫ t

−∞
1

R(β · t1)
dt1

)
R(β · t )+

β · t +β2
∫ 0

t (
∫ t2
−∞

1
R(β·t1) dt1)dt2

1−β∫ t
−∞

1
R(β·t1) dt1

,

and

χ′+ β

2
=β

(− 1
2 (λ′

1)2 +λ1λ
′′
1

(λ′
1)2

)
≤ 0.

It is easy to verify all the previous assumptions about ζ,χ and η.
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