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1. Introduction and main result

In [2] and [3], it is showed that the following minimization problem

inf
φ∈X 1,α\{0}

(∫
Rn |∇φ|2dx

) p(n+α)−4n
2(4+α−n) [L(φ)]

2n−p(n−2)
2(4+α−n)∫

Rn |φ|p dx
, (1)

is attained if and only if n 6= 4+α and
p ∈ [ 2(4+α)

2+α ,∞)
, n = 2;

p ∈ [ 2(4+α)
2+α , 2n

n−2

]
, 3 ≤ n < 4+α;

p ∈ [ 2n
n−2 , 2(4+α)

2+α
]
, n > 4+α.

(2)

Here X 1,α := {v ∈D1,2(Rn);L(v) <∞} with n ≥ 2, and L(v) := ∫
Rn

∫
Rn

v2(x)v2(y)
|x−y |n−α dxdy . The functional

L is the so-called Coulomb energy of the wave. We endow the space X 1,α with the norm ‖u‖2
X 1,α =∫

Rn |∇u|2dx + [L(u)]
1
2 .
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The minimization problem (1) is associated with the best constant of the Coulomb–Sobolev
inequality ∫

Rn
|φ|p dx ≤C

(∫
Rn

|∇φ|2dx

) p(n+α)−4n
2(4+α−n)

[L(φ)]
2n−p(n−2)
2(4+α−n) , ∀φ ∈ X 1,α, (3)

which is helpful to well understand the lower bound of the Coulomb energy. The Euler–Lagrange
equation of (1) is the following Schrödinger–Poisson–Slater type equation

−∆u + (|x|α−n ∗u2)u =µ|u|p−2u, u > 0 in Rn , (4)

where n ≥ 2, α ∈ (0,n), µ > 0 is the so-called Slater constant of the equation, and p belongs
to the intervals in (2). Equation (4) appears in various physical frameworks, such as plasma
physics or semiconductor theory. In equation (4), |x|α−n ∗u2 is known as the repulsive Coulomb
potential, which makes the usual Sobolev space H 1(Rn) not to be a good framework for posing
the equation (4). In this paper, we are interested in studying the ground state solutions of (4)
in X 1,α.

There are a series of analytical results on equation (4) in literatures, see [8, 10] and the refer-
ences therein. In particular, Ianni and Ruiz [6] studied the following version of the Schrödinger–
Poisson–Slater system

−∆u +
(
u2 ∗ 1

4π|x|
)

u =µ|u|p−2u, in R3. (5)

We also note that there are many results on other Schrödinger–Poisson systems in literatures;
see [1, 4, 5, 7, 11] and many others.

This paper is concerned with the variational problem of (4). It is known that every solution to
equation (4) is a critical point of the energy functional J : X 1,α→R, which is given by

J (u) = 1

2

∫
Rn

|∇u|2dx + 1

4

∫
Rn

∫
Rn

u2(x)u2(y)

|x − y |n−α dxdy − µ

p

∫
Rn

|u|p dx.

Clearly, the trivial solution 0 is a local minimum of J . So J has a mountain pass geometry
structure. However, it seems difficult to verify the (PS) condition when p ∈ (2,4). It is natural
that the critical point can be searched for in some constrained classes. We point out that the
usual Nehari manifold is not suitable because it is difficult to prove the boundedness of the
minimizing sequences. Neither the Pohozaev manifold is a suitable constrained class. In fact,
when n = 2, the minimization problem infu∈N J (u) has no solution when p = 2α+8

2+α , where
N := {u ∈ X 1,α\{0} : 2+α

4 L(u)− 2
p

∫
R2 |u|p dx = 0}. In addition, J is unbounded from below on N

when p > 2α+8
2+α .

Now we try to minimize J on another suitable manifold. In Section 2, we carry out the
constrained minimization on a new manifold M . Here,

M := {u ∈ X 1,α\{0} : I (u) = 0}, (6)

where

I (u) := 4+α−n

2+α
∫
Rn

|∇u|2dx + 4+α−n

2(2+α)
L(u)−

(
p − 2n

2+α
)
µ

p

∫
Rn

|u|p dx.

This new manifold M can be viewed as the combination of the Nehari manifold and the Po-
hozaev manifold which was introduced in [9, 12]. A function u is called the Nehari–Pohozaev
type ground state solution of (4), if u is a solution of the least energy problem

min{J (u) : u ∈M }.

We summarize our main existence result in the following statement.

Theorem 1. Assume that 2(α+4)
2+α < p < 2n

n−2 when n < 4+α, or 2n
n−2 < p < 2(α+4)

2+α when n > 4+α.
Then problem (4) has a ground state solution of the Nehari–Pohozaev type.
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2. Proof of Theorem 1

Let us define F : X 1,α→R as

F (u) :=
∫
Rn

|∇u|2dx +
∫
Rn

∫
Rn

u2(x)u2(y)

|x − y |n−α dxdy.

Similar to Proposition 3.6 in [6], by the concentration-compactness principle and the non-local
Brezis–Lieb lemma (cf. [2, Lemma 2.2]), we also have the following result.

Lemma 2. Assume that {um} ⊂ X 1,α is a bounded (PS) sequence of J at a certain level c > 0. Then,
up to a subsequence, there exists k ∈ N∪ {0} and a finite sequence

(v0, v1, . . . , vk ) ⊂ X 1,α, vi 6≡ 0, f or i > 0

of solutions of equation (4) and k sequences {ξ1
m}, . . . , {ξk

m} ⊂Rn , such that as m →+∞,∥∥∥∥∥um − v0 −
k∑

i=1
vi ( · −ξi

m)

∥∥∥∥∥→ 0; |ξi
m |→+∞, |ξi

m −ξ j
m |→+∞, i 6= j ;

and
k∑

i=0
J (vi ) = c, F (um) →

k∑
i=0

F (vi ).

Lemma 3. Assume that 2(α+4)
2+α < p < 2n

n−2 when n < 4+α or 2n
n−2 < p < 2(α+4)

2+α when n > 4+α. Then
J is unbounded from below.

Proof. (i). If 2(α+4)
2+α < p < 2n

n−2 with n < 4+α. Let u ∈ X 1,α, and ut = tu(t b x), b = 2
2+α , t > 0.

By the standard scaling we have
∫
Rn |∇ut |2dx = t

2(4+α−n)
2+α

∫
Rn |∇u|2dx, L(ut ) = t

2(4+α−n)
2+α L(u), and∫

Rn |ut |p dx = t p−nb
∫
Rn |u|p dx. Hence,

J (ut ) = 1

2

∫
Rn

|∇ut |2dx + 1

4
L(ut )− µ

p

∫
Rn

|ut |p dx

= t
2(4+α−n)

2+α

2

∫
R2

|∇u|2dx + t
2(4+α−n)

2+α

4
L(u)− µt p−nb

p

∫
Rn

|u|p dx.

We see that J (ut ) →−∞ as t →+∞ provided p > 8+2α
2+α and µ> 0.

(ii). For the case 2n
n−2 < p < 2(α+4)

2+α when n > 4+α. Letting u ∈ X 1,α, and ut = t−1u(t b x) with

b = − 2
2+α and t > 0, we also have

∫
Rn |∇ut |2dx = t

2(n−4−α)
2+α

∫
Rn |∇u|2dx, L(ut ) = t

2(n−4−α)
2+α L(u), and∫

Rn |ut |p dx = t−p−nb
∫
Rn |u|p dx. Therefore,

J (ut ) = t
2(n−4−α)

2+α

2

∫
R2

|∇u|2dx + t
2(n−4−α)

2+α

4
L(u)− µt−p−nb

p

∫
Rn

|u|p dx.

It is easily see that J (ut ) → −∞ as t → +∞ if and only if p < 8+2α
2+α and µ > 0. The proof is

complete. �

2.1. Case 1. 2(α+4)
2+α < p < 2n

n−2 with n < 4+α
By calculations, we can easily get the following lemma.

Lemma 4. Let a1, a2 be positive constants, and f (t ) = a1t
2(4+α−n)

2+α − a2t p−nb for t ≥ 0. When
2(α+4)

2+α < p < 2n
n−2 with n < 4+α, f has a unique critical point, corresponding to its maximum.

Proof. For t ≥ 0, and p > 8+2α
2+α , f ′(t ) = t

6+α−2n
2+α a1

2(4+α−n)
2+α −a2(p −nb)t p− 8+2α

2+α . Clearly, f ′(t ) has a
unique positive real zero point t0. Noting that f (t ) → 0+ as t → 0+ and f (t ) → −∞ as t → +∞,
thus f achieves its maximum at the point t0. The proof is complete. �



222 Chunyu Lei and Yutian Lei

Assume that u is a critical point of J . Write ut = tu(t b x) with b = 2
2+α and t > 0. Clearly,

ϕ(t ) := J (ut ) is positive for small t and tends to −∞ as t → +∞. By Lemma 4, ϕ has a unique
critical point which corresponds to its maximum. Since u is a critical point of J , the maximum of
ϕ(t ) should be achieved at t = 1 and ϕ′(1) = 0. Clearly, I (u) =ϕ′(1), where I is defined in (6). This
is a reason why we choose M as the constrained manifold.

Obviously, M 6= ;. Indeed, for given any v 6= 0, Lemma 3 shows that there exists t > 0 such that
uv

t ∈M . Moreover, the curve Γ= {ut }t∈R intersects the manifold M and J |Γ attains its maximum
along Γ at the point u. If u is a mountain pass type solution of problem (4), it is natural to look for
the minima of J on M . In addition, For any nontrivial critical point u of J , it is standard to prove
the following Pohozaev identity

P (u) := n −2

2

∫
Rn

|∇u|2dx + n +α
4

L(u)− nµ

p

∫
Rn

|u|p dx = 0.

It is clear that I (u) = 〈J ′(u),u〉−bP (u) with b = 2
α+2 . If u is a nontrivial solution of (4), then u ∈M .

Moreover, we have the following result.

Lemma 5. If 8+2α
2+α < p < 2n

n−2 with n < 4+α. Then M is a C 1-manifold and every critical point of
J in M is a critical point of J .

Proof. We proceed in four steps.

Step 1. We claim 0 6∈ ∂M .
By (3), there exists C > 0 such that∫

Rn
|u|p dx ≤C

(∫
Rn

|∇u|2dx

) p(n+α)−4n
2(4+α−n)

(L(u))
2n−p(n−2)
2(4−n+α) .

Since p > 2(α+4)
2+α with n < 4+α, we deduce 2n−p(n−2)

2(4−n+α) < 1. Using Young’s inequality, there holds

I (u) = 4+α−n

2+α ‖∇u‖2
2 +

4+α−n

2(2+α)
L(u)− p −nb

p
µ

∫
Rn

|u|p dx

≥ 4+α−n

2+α ‖∇u‖2
2 +

4+α−n

2(2+α)
L(u)−C‖∇u‖

p(n+α)−4n
4+α−n

2 (L(u))
2n−p(n−2)
2(4−n+α)

= 4+α−n

2+α ‖∇u‖2
2 −C1‖∇u‖

2p(n+α)−8n
8+2α−4n+p(n−2)

2 ,

where C1 is a positive constant. In view of p > 8+2α
2+α , there holds 2p(n+α)−8n

8+2α−4n+p(n−2) > 2. Therefore, we
can find suitably small r > 0 such that when ‖∇u‖2 < r , there holds I (u) > ρ for some ρ > 0. Then
0 6∈ ∂M .

Step 2. We claim infM J > 0.
For any u ∈M , let A = ∫

Rn |∇u|2dx, B = L(u), C =µ∫
Rn |u|p dx. Then A ,B,C are positive and

I (u) = 4+α−n
2+α A + 4+α−n

2(2+α) B− p−nb
p C = 0. Therefore, by p > 8+2α

2+α ,

J (u) = 1

2
A + 1

4
B− 1

p
C

= p(2+α)− (8+2α)

2(p −nb)(2+α)
A + p(2+α)− (8+2α)

4(p −nb)(2+α)
B > 0.

(7)

Step 3. We claim that M is a C 1-manifold.
By the implicit function theorem, it only need I ′(u) 6= 0 for any u ∈M . We prove it by argument

of contradiction. Namely, suppose that I ′(u) = 0 for some u ∈ M . Thus, in a weak sense there
holds

− 2(4+α−n)

2+α ∆u + 2(4+α−n)

2+α (|x|α−n ∗u2)u = (p −nb)µup−1. (8)
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Multiplying (8) by u and integrating, we have

2(4+α−n)

2+α A + 2(4+α−n)

2+α B− (p −nb)C = 0. (9)

The Pohozaev identity corresponding to equation (8) is

2(4+α−n)

2+α
n −2

2
A + 2(4+α−n)

2+α
n +α

4
B− p −nb

p
C = 0. (10)

(i). When n = 2, it follows from (10) that (p −2b)C = p(2+α)
4 B. Inserting into I (u) = 0 and (9), we

get A − α
4 B = 0 and A − p(2+α)−8

8 B = 0, which implies 2α−p(2+α)+8
8 B = 0. This is impossible since

p > 8+2α
2+α and B > 0.

(ii). When n 6= 2, it follows from I (u) = 0 and (9) that 4+α−n
2+α B = p−2

p (p − nb)C . Applying

(n−2)I (u) = 0 and (10), we have 4+α−n
2 B = 2

p (p−nb)C . Therefore, [(p−2)(2+α)−4](p−nb)
p C = 0. Since

C > 0 and p −nb 6= 0, we have p = 8+2α
2+α . We reach a contradiction. Thus, M is a C 1-manifold.

Step 4. We claim that every critical point of J on M is a critical point of J in X 1,α.
Assume that u is a critical point of J on M , there exists a Lagrange multiplier λ such that

J ′(u) =λI ′(u). It can be written, in a weak sense, as

−
[

1− 2(4+α−n)

2+α λ

]
∆u +

[
1− 2(4+α−n)

2+α λ

]
(|x|α−n ∗u2)u = [1− (p −nb)λ]µup−1. (11)

It remains now to prove that λ= 0.
Recalling the definitions of A ,B,C , arguing as Step 3, we can establish the following equa-

tions 

J (u) = 1
2 A + 1

4 B− 1
p C ,

I (u) = 4+α−n
2+α A + 4+α−n

2(2+α) B− p−nb
p C = 0,[

1− 2(4+α−n)
2+α λ

]
A +

[
1− 2(4+α−n)

2+α λ
]
B− [1− (p −nb)λ]C = 0,

n−2
2

[
1− 2(4+α−n)

2+α λ
]
A + n+α

4

[
1− 2(4+α−n)

2+α λ
]
B− [1− (p −nb)λ] n

p C = 0,

(12)

where the third equation follows by multiplying (11) by u and integrating, and the fourth equality
is the Pohozaev identity corresponding to equation (11).

(i). When n = 2, from the fourth equation in (12), we have [1 − (p − 2b)λ]C = p(1−2λ)(2+α)
8 B.

Inserting into (12), we have
A + 4[1−(p−2b)λ]−(2+α)(p−2b)(1−2λ)

8[1−(p−2b)λ] B = 0,

(1−2λ)A − p(2+α)−8
8 (1−2λ)B = 0,

[1− (p −2b)λ]C = p(1−2λ)(2+α)
8 B.

(13)

If λ= 1
2 , from the third equation in (13), we obtain p = 8+2α

2+α . This is impossible, and hence λ 6= 1
2 .

Therefore, from the second equation in (13), we have A = p(2+α)−8
8 B. Inserting into the first

equation in (13), and noting that B 6= 0, we obtain that (p − 2b)[(8+ 2α− p(2+α)]λ = 0. This
implies that λ≡ 0.

(ii). When n 6= 2, the second equation is multiplied by 2λ, and add to the third equation in (12),
we have

A +
[

1− 4+α−n

2+α λ

]
B =

[
1− p −2

p
(p −nb)λ

]
C . (14)

The fourth equation in (12) can be rewritten as[
1− 2(4+α−n)

2+α λ

]
A + n +α

2(n −2)

[
1− 2(4+α−n)

2+α λ

]
B = [1− (p −nb)λ]

2n

p(n −2)
C . (15)
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It follows from (15) and the third equation in (12) that

2+α−2(4+α−n)λ

2+α B = [1− (p −nb)λ]
2[2n − (n −2)p]

p(4+α−n)
C . (16)

The second equation in (12) can be rewritten as A = (2+α)(p−nb)
p(4+α−n) C − 1

2 B. Inserting into equa-
tion (14), one obtains

2+α−2(4+α−n)λ

2+α B = 2

[
1− (p −nb)(p −2)

p
λ− (p −nb)(2+α)

p(4+α−n)

]
C . (17)

By C > 0, it follows from (16) and (17) that

2n − (n −2)p −p(4+α−n)+ (p −nb)(2+α) = (p −nb)[2n − (n −2)p − (p −2)(4+α−n)]λ.

By computing, we have p −nb > 0, 2n − (n −2)p − (p −2)(4+α−n) = 8+2α−p(2+α) < 0, and
2n − (n −2)p −p(4+α−n)+ (p −nb)(2+α) = 0. Consequently, λ≡ 0. We conclude that J ′(u) = 0
for n ≥ 2, i.e., u is a critical point of J . The proof is complete. �

Proof of Theorem 1 in Case 1. We prove that J attains its minimum in M .
Let {um} ⊂ M be a minimizing sequence of J in M , that is, J (um) → infM J as m → ∞. We

follow the ideas of Theorems 8.6 and 8.7 in [13] to claim that {um} is also a (PS) sequence of J .
In fact, Step 3 in the proof of Lemma 5 shows I ′(um) 6= 0. Therefore, by the Ekeland variational
principle (see [13, Theorem 8.5]), there exists {λm} ⊂R such that

J ′(um)−λm I ′(um) → 0 as m →∞. (18)

Therefore, when m →∞, we have
I (um) = 4+α−n

2+α Am + 4+α−n
2(2+α) Bm − p−nb

p Cm = 0,[
1− 2(4+α−n)

2+α λm

]
Am +

[
1− 2(4+α−n)

2+α λm

]
Bm − [1− (p −nb)λm]Cm = o(1),

n−2
2

[
1− 2(4+α−n)

2+α λm

]
Am + n+α

4

[
1− 2(4+α−n)

2+α λm

]
Bm − [1− (p −nb)λm] n

p Cm = o(1),

(19)

where Am = ∫
Rn |∇um |2dx, Bm = L(um), Cm = µ

∫
Rn |um |p dx. Similar to the proof of Step 4 in

Lemma 5 (replacing (12) by (19)), we can deduce λm → 0 as m →∞. Combining with (18), we get

J ′(um) → 0 as m →∞.

Thus, {um} ⊂M is (PS) sequence of J .
By (7), there holds

p(2+α)− (8+2α)

2(p −nb)(2+α)

∫
Rn

|∇um |2dx + p(2+α)− (8+2α)

4(p −nb)(2+α)
L(um) → inf

M
J (m →∞).

Since p > 8+2α
2+α , we obtain that {‖um‖X 1,α } is bounded. In addition, by the Step 2 in the proof of

Lemma 5, the level value is positive. By Lemma 2, up to a subsequence, and there exist k ∈ N∪ {0}
and a finite sequence

(v0, v1, . . . , vk ) ⊂ X 1,α, vi 6≡ 0, f or i > 0

of solutions of problem (4) and k sequences {ξ1
m}, . . . , {ξk

m} ⊂Rn , such that as m →+∞,∥∥∥∥∥um − v0 −
k∑

i=1
vi ( ·−ξi

m)

∥∥∥∥∥
X 1,α

→ 0; (20)

|ξi
m |→+∞, |ξi

m −ξ j
m |→+∞, i 6= j ;

k∑
i=0

J (vi ) = inf
M

J . (21)

Since vi (i = 0,1, . . . ,k) is a solution of equation (4), we have J ′(vi ) = 0 and P (vi ) = 0 for
i = 0,1, . . . ,k. This implies that vi ∈ M , and thus J (vi ) ≥ infM J for i = 0,1, . . . ,k. Applying (21)
and noting that Step 2 in Lemma 5, there are two possibilities: either v0 6= 0 and k = 0, or v0 = 0
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and k = 1. In the first case, um( ·+ξ1
m) → v0( · ) in X 1,α (by (20)) and v0 is a solution of equation (4)

(by Step 4 in Lemma 5) with J (v0) = infM J (by (21)), and so v0 is a ground state solution of (4).
In the latter, um( · +ξ1

m) → v1( · ) in X 1,α as m →∞ (by (20)) and v1 is a ground state solution of
equation (4) with J (v1) = infM J (by (21)). The proof is complete. �

2.2. Case 2. 2n
n−2 < p < 2(α+4)

2+α with n > 4+α

Similar to Lemma 4, we remark that the function f (t ) := a1t
2(n−α−4)

2+α −a2t−p−nb (with t ≥ 0, a1, a2 >
0 and b := −2

2+α ) has a unique critical point, corresponding to its maximum provided 2n
n−2 < p <

2(α+4)
2+α with n > 4+α.

Define

Ĩ (u) := n −α−4

2+α
∫
Rn

|∇u|2dx + n −α−4

2(2+α)
L(u)− −p −nb

p
µ

∫
Rn

|u|p dx.

It is clear that Ĩ (u) 6= −I (u), and Ĩ (u) =−〈J ′(u),u〉−bP (u). Now,

M = {u ∈ X 1,α\{0} : Ĩ (u) = 0}.

It is similar to Lemma 5 that we also have the following lemma.

Lemma 6. Assume that 2n
n−2 < p < 8+2α

2+α with n > 4+α. Then M is a C 1-manifold and every critical
point of J in M is a critical point of J .

Proof. Similar to the Step 1 in Lemma 5, we can prove that 0 6∈ ∂M .

(i). We claim infM J > 0.
Actually, for any u ∈ M , set A = ∫

Rn |∇u|2dx, B = L(u), C = µ
∫
Rn |u|p dx, and δ = −p −nb.

Clearly, δ> 0 and Ĩ (u) = n−α−4
2+α A + n−α−4

2(2+α) B− δ
p C = 0, which implies C = p

δ
n−α−4

2+α A + p
δ

n−α−4
2(2+α) B.

Therefore, by p < 8+2α
2+α , there holds

J (u) = 1

2
A + 1

4
B− 1

p
C

= 8+2α−p(2+α)

2δ(2+α)
A + 8+2α−p(2+α)

4δ(2+α)
B > 0.

(22)

(ii). We claim that Ĩ ′(u) 6= 0 for any u ∈M , then M is a C 1-manifold.
We prove it by argument of contradiction. Suppose that Ĩ ′(u) = 0 for some u ∈ M . In a weak

sense, the equation Ĩ ′(u) = 0 means that

− 2(n −α−4)

2+α ∆u + 2(n −α−4)

2+α (|x|α−n ∗u2)u = δµup−1. (23)

Then, we establish the following system
J (u) = 1

2 A + 1
4 B− 1

p C ,

Ĩ (u) = n−α−4
2+α A + n−α−4

2(2+α) B− 1
p C δ= 0,

2(n−α−4)
2+α A + 2(n−α−4)

2+α B−C δ= 0,
n−2

2
2(n−α−4)

2+α A + n+α
4

2(n−α−4)
2+α B− n

p C δ= 0,

(24)

It follows from the second equation and the third equation in (24) that n−α−4
2+α B = p−2

p C δ.
Multiplying the second equation by (n −2), and together with the fourth equation in (24), we get
n−α−4

2 B = 2
p C δ. Therefore, (p−2)(2+α)−4

p C δ= 0. Since δ,C > 0, we have p = 8+2α
2+α . It is impossible.

Thus, M is a C 1-manifold.
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(iii). We claim every critical point of J on M is a critical point of J in X 1,α.
Suppose that u is a critical point of J on M , there exists a Lagrange multiplier λ such that

J ′(u) =λĨ ′(u). Consequently, u solves the equation

−
[

1− 2(n −α−4)

2+α λ

]
∆u +

[
1− 2(n −α−4)

2+α λ

]
(|x|α−n ∗u2)u = [1−δλ]µup−1. (25)

In the following we prove λ≡ 0 (since Ĩ ′(u) 6= 0 by (ii)).
Recalling the definitions of A ,B,C ,δ, we can establish the following equations

J (u) = 1
2 A + 1

4 B− 1
p C ,

Ĩ (u) = n−α−4
2+α A + n−α−4

2(2+α) B− 1
p C δ= 0,[

1− 2(n−α−4)
2+α λ

]
A +

[
1− 2(n−α−4)

2+α λ
]
B− (1−δλ)C = 0,

n−2
2

[
1− 2(n−α−4)

2+α λ
]
A + n+α

4

[
1− 2(n−α−4)

2+α λ
]
B− (1−δλ) n

p C = 0,

(26)

where the third equation follows by multiplying (25) by u and integrating, and the fourth equality
is the Pohozaev identity corresponding to equation (25).

It follows from the second equation and the third equation in (26) that

A +
[

1− n −α−4

2+α λ

]
B =

[
1+ 2δ

p
λ−δλ

]
C . (27)

From the fourth equation in in (26), we have[
1− 2(n −α−4)

2+α λ

]
A + n +α

2(n −2)

[
1− 2(n −α−4)

2+α λ

]
B = 2n(1−δλ)

p(n −2)
C . (28)

Applying (28) and the third equation in (26), we get

2+α−2(n −α−4)λ

2+α B = [1−δλ]
2[2n − (n −2)p]

p(4+α−n)
C . (29)

The second equation in (26) can be rewritten as A = δ(2+α)
p(n−α−4) C − 1

2 B. Inserting into (27), one
obtains

2+α−2(n −α−4)λ

2+α B = 2

[
1+ 2δ

p
λ− δ(2+α)

p(n −α−4)
−δλ

]
C . (30)

Noting that δ,C > 0, it follows from (29) and (30) that

p(n −2)−2n

p(n −α−4)
− p(n −α−4)−δ(2+α)

p(n −α−4)
=−δ

[
p −2

p
− 2n −p(n −2)

p(4+α−n)

]
λ.

By computing, we have p(n − 2) − 2n − [p(n −α− 4) − δ(2 +α)] = 0, and p−2
p − 2n−p(n−2)

p(4+α−n) > 0.
Consequently, λ ≡ 0. We conclude that J ′(u) = 0, i.e., u is a critical point of J . The proof is
complete. �

Proof of Theorem 1 in Case 2. Let {um} ⊂ M be a minimizing sequence of J in M , that is,
J (um) → infM J as m → ∞, similar to the proof of Case 1, we can deduce that J ′(um) → 0 as
m →∞. By (22), there holds

8+2α−p(2+α)

2δ(2+α)

∫
Rn

|∇um |2dx + 8+2α−p(2+α)

4δ(2+α)
L(um) → inf

M
J (m →∞).

Since p < 8+2α
2+α , we obtain that {‖um‖X 1,α } is bounded. Similar to the proof of Case 1, we can obtain

that equation (4) has a ground state solution. The proof is complete. �
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