We prove a functional central limit theorem for the partial sums of a class of time varying processes with long memory.
Nous étudions une famille de processus non stationnaires à longue mémoire. Nous prouvons un théorème limite fonctionnel pour le processus des sommes partielles.
Accepted:
Published online:
Anne Philippe 1; Donatas Surgailis 2; Marie-Claude Viano 3
@article{CRMATH_2006__342_4_269_0,
author = {Anne Philippe and Donatas Surgailis and Marie-Claude Viano},
title = {Invariance principle for a class of non stationary processes with long memory},
journal = {Comptes Rendus. Math\'ematique},
pages = {269--274},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {4},
doi = {10.1016/j.crma.2005.12.001},
language = {en},
}
TY - JOUR AU - Anne Philippe AU - Donatas Surgailis AU - Marie-Claude Viano TI - Invariance principle for a class of non stationary processes with long memory JO - Comptes Rendus. Mathématique PY - 2006 SP - 269 EP - 274 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2005.12.001 LA - en ID - CRMATH_2006__342_4_269_0 ER -
Anne Philippe; Donatas Surgailis; Marie-Claude Viano. Invariance principle for a class of non stationary processes with long memory. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 269-274. doi: 10.1016/j.crma.2005.12.001
[1] Convergence of Probability Measures, John Wiley & Sons Inc., New York, 1968
[2] Time Series: Theory and Methods, Springer-Verlag, New York, 1991
[3] A. Philippe, D. Surgailis, M.-C. Viano, Time-varying fractionally integrated processes with nonstationary long memory, Technical report, Pub. IRMA Lille, 61(9), 2004
[4] Non-CLTs: U-statistics, multinomial formula and approximations of multiple Itô-Wiener integrals (P. Doukhan et al., eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, MA, 2003, pp. 129-142
[5] Fractional Brownian motion and long-range dependence (P. Doukhan et al., eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, MA, 2003, pp. 5-38
Cited by Sources:
⁎ The research is supported by joint Lithuania and France scientific program PAI EGIDE 09393 ZF.
Comments - Policy
