Comptes Rendus
Complex Analysis
A Note on the approximation of plurisubharmonic functions
Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 647-650.

Let ΩCn be a strongly hyperconvex domain and Ωj be a decreasing sequence of hyperconvex domains such that Ω=(Ωj)°. We show that every plurisubharmonic function φFa(Ω) is a limit of an increasing sequence of functions φjFa(Ωj).

Soit ΩCn un domaine fortement hyperconvexe et Ωj une suite décroissante de domaines hyperconvexes tel que Ω=(Ωj)°. On prouve que toute fonction plurisousharmonique φFa(Ω) est limite d'une suite croissante de fonctions φjFa(Ωj).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.03.002

Slimane Benelkourchi 1

1 Department of Mathematics, Royal Institute of Technology, 10044 Stockholm, Sweden
@article{CRMATH_2006__342_9_647_0,
     author = {Slimane Benelkourchi},
     title = {A {Note} on the approximation of plurisubharmonic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {647--650},
     publisher = {Elsevier},
     volume = {342},
     number = {9},
     year = {2006},
     doi = {10.1016/j.crma.2006.03.002},
     language = {en},
}
TY  - JOUR
AU  - Slimane Benelkourchi
TI  - A Note on the approximation of plurisubharmonic functions
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 647
EP  - 650
VL  - 342
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2006.03.002
LA  - en
ID  - CRMATH_2006__342_9_647_0
ER  - 
%0 Journal Article
%A Slimane Benelkourchi
%T A Note on the approximation of plurisubharmonic functions
%J Comptes Rendus. Mathématique
%D 2006
%P 647-650
%V 342
%N 9
%I Elsevier
%R 10.1016/j.crma.2006.03.002
%G en
%F CRMATH_2006__342_9_647_0
Slimane Benelkourchi. A Note on the approximation of plurisubharmonic functions. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 647-650. doi : 10.1016/j.crma.2006.03.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.002/

[1] E. Bedford; B.A. Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40

[2] S. Benelkourchi; B. Jennane; A. Zeriahi Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates, Ark. Mat., Volume 43 (2005), pp. 85-112

[3] U. Cegrell, Personal communication, 2005

[4] U. Cegrell The general definition of the Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179

[5] U. Cegrell; S. Kolodziej; A. Zeriahi Subextension of plurisubharmonic functions with weak singularities, Math. Z., Volume 250 (2005), pp. 7-22

[6] S. Kolodziej The complex Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117

[7] E. Poletsky Approximation of plurisubharmonic functions by multipole Green functions, Trans. Amer. Math. Soc., Volume 355 (2003) no. 4, pp. 1579-1591

Cited by Sources:

Comments - Policy