Let be a strongly hyperconvex domain and be a decreasing sequence of hyperconvex domains such that . We show that every plurisubharmonic function is a limit of an increasing sequence of functions .
Soit un domaine fortement hyperconvexe et une suite décroissante de domaines hyperconvexes tel que . On prouve que toute fonction plurisousharmonique est limite d'une suite croissante de fonctions .
Accepted:
Published online:
Slimane Benelkourchi 1
@article{CRMATH_2006__342_9_647_0,
author = {Slimane Benelkourchi},
title = {A {Note} on the approximation of plurisubharmonic functions},
journal = {Comptes Rendus. Math\'ematique},
pages = {647--650},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {9},
doi = {10.1016/j.crma.2006.03.002},
language = {en},
}
Slimane Benelkourchi. A Note on the approximation of plurisubharmonic functions. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 647-650. doi: 10.1016/j.crma.2006.03.002
[1] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40
[2] Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates, Ark. Mat., Volume 43 (2005), pp. 85-112
[3] U. Cegrell, Personal communication, 2005
[4] The general definition of the Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179
[5] Subextension of plurisubharmonic functions with weak singularities, Math. Z., Volume 250 (2005), pp. 7-22
[6] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117
[7] Approximation of plurisubharmonic functions by multipole Green functions, Trans. Amer. Math. Soc., Volume 355 (2003) no. 4, pp. 1579-1591
Cited by Sources:
Comments - Policy
