Given a parabolic cylinder , with , we consider the class of finite measures which do not charge sets of zero p-parabolic capacity in Q. We prove that such measures can be strongly approximated by measures which can be written as with . Estimates on the capacity of level sets of solutions of parabolic equations play a crucial role in our proof.
Étant donné un cylindre parabolique , avec , on considère la classe des mesures bornées sur Q qui ne chargent pas les ensembles de p-capacité nulle. Nous démontrons que ces mesures peuvent être approchées au sens fort par des mesures de la forme avec . Des estimations sur la capacité des ensembles de niveau des solutions d'équations paraboliques jouent un rôle crucial dans notre preuve.
Published online:
Francesco Petitta 1; Augusto C. Ponce 2; Alessio Porretta 3
@article{CRMATH_2008__346_3-4_161_0, author = {Francesco Petitta and Augusto C. Ponce and Alessio Porretta}, title = {Approximation of diffuse measures for parabolic capacities}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--166}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.12.002}, language = {en}, }
TY - JOUR AU - Francesco Petitta AU - Augusto C. Ponce AU - Alessio Porretta TI - Approximation of diffuse measures for parabolic capacities JO - Comptes Rendus. Mathématique PY - 2008 SP - 161 EP - 166 VL - 346 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2007.12.002 LA - en ID - CRMATH_2008__346_3-4_161_0 ER -
Francesco Petitta; Augusto C. Ponce; Alessio Porretta. Approximation of diffuse measures for parabolic capacities. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 161-166. doi : 10.1016/j.crma.2007.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.12.002/
[1] Nonlinear parabolic equations with measure data, J. Funct. Anal., Volume 147 (1997), pp. 237-258
[2] Reduced measures for obstacle problems, Adv. Differential Equations, Volume 10 (2005), pp. 1201-1234
[3] Parabolic capacity and soft measures for nonlinear equations, Potential Anal., Volume 19 (2003), pp. 99-161
[4] Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Dunod, 1969
[5] F. Petitta, A.C. Ponce, A. Porretta, Strong approximation of diffuse measures and nonlinear parabolic equations, in preparation
[6] Parabolic capacity and Sobolev spaces, SIAM J. Math. Anal., Volume 14 (1983), pp. 522-533
[7] Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (IV), Volume 177 (1999), pp. 143-172
Cited by Sources:
Comments - Policy