The classes of two theta divisors on an Abelian variety in the naive Grothendieck ring of varieties need not be congruent modulo the class of the affine line.
Dans l'anneau de Grothendieck des variétés, les classes de deux diviseurs thêta d'une même variété abélienne ne sont pas nécessairement congruentes modulo la classe de la droite affine.
Accepted:
Published online:
Franziska Heinloth 1
@article{CRMATH_2008__346_5-6_301_0, author = {Franziska Heinloth}, title = {A note on congruences for theta divisors}, journal = {Comptes Rendus. Math\'ematique}, pages = {301--303}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.005}, language = {en}, }
Franziska Heinloth. A note on congruences for theta divisors. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 301-303. doi : 10.1016/j.crma.2008.01.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.005/
[1] Torification and factorization of birational maps, J. Amer. Math. Soc., Volume 15 (2002) no. 3, pp. 531-572
[2] On Witt vector cohomology for singular varieties, Compos. Math., Volume 143 (2007) no. 2, pp. 363-392
[3] Descent, motives and K-theory, J. Reine Angew. Math., Volume 478 (1996), pp. 127-176
[4] Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci., Volume 95 (2002), pp. 1-91
[5] Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan, Volume 17 (1965), pp. 1-16
[6] Motivic measures and stable birational geometry, Moscow Math. J., Volume 3 (2003) no. 1, pp. 85-95
[7] Toroidal varieties and the weak factorization theorem, Invent. Math., Volume 154 (2003) no. 2, pp. 223-331
Cited by Sources:
Comments - Policy