We show that the essential dimension of a non-trivial Abelian variety over a number field is infinite.
On montre que la dimension essentielle d'une variété abélienne non-triviale définie sur un corps de nombres est infinie.
Accepted:
Published online:
Patrick Brosnan 1; Ramesh Sreekantan 2
@article{CRMATH_2008__346_7-8_417_0,
author = {Patrick Brosnan and Ramesh Sreekantan},
title = {Essential dimension of {Abelian} varieties over number fields},
journal = {Comptes Rendus. Math\'ematique},
pages = {417--420},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {7-8},
doi = {10.1016/j.crma.2008.02.008},
language = {en},
}
Patrick Brosnan; Ramesh Sreekantan. Essential dimension of Abelian varieties over number fields. Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 417-420. doi: 10.1016/j.crma.2008.02.008
[1] Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math., Volume 8 (2003), pp. 279-330 (electronic)
[2] The essential dimension of a g-dimensional complex abelian variety is 2g, Transform. Groups, Volume 12 (2007) no. 3, pp. 437-441
[3] Essential dimension and algebraic stacks | arXiv
[4] l-adic and λ-adic representations associated to abelian varieties defined over number fields, Amer. J. Math., Volume 114 (1992) no. 2, pp. 315-353
[5] Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin, 1982
[6] On the essential dimension of cyclic p-groups, Invent. Math., Volume 171 (2008) no. 1, pp. 175-189
[7] N. Karpenko A. Merkurjev, Essential dimension of finite p-groups, Invent. Math., Online first. DOI: | DOI
[8] Abelian l-adic Representations and Elliptic Curves, Research Notes in Mathematics, vol. 7, A K Peters Ltd., Wellesley, MA, 1998 (With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original)
[9] Letter to K. Ribet dated 1.1.1981, Œuvres. Collected Papers, IV, Springer-Verlag, Berlin, 2000, pp. 1985-1998 (pp. viii+657)
Cited by Sources:
Comments - Policy
