Let be the nth Fibonacci number. For , let
Soit le nombre de Fibonacci. Pour , soit
Accepted:
Published online:
Diego Marques 1; Alain Togbé 2
@article{CRMATH_2010__348_13-14_717_0, author = {Diego Marques and Alain Togb\'e}, title = {Perfect powers among {Fibonomial} coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--720}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.006}, language = {en}, }
Diego Marques; Alain Togbé. Perfect powers among Fibonomial coefficients. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 717-720. doi : 10.1016/j.crma.2010.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.006/
[1] Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordeaux, Volume 18 (2006), pp. 299-313
[2] Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math., Volume 539 (2001), pp. 75-122
[3] Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers, Ann. of Math., Volume 163 (2006), pp. 969-1018
[4] Diophantine equations with products of consecutive terms in Lucas sequences, J. Number Theory, Volume 114 (2005), pp. 298-311
[5] My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, New York, 2000
[6] On arithmetical series, Messenger Math., Volume 21 (1892), pp. 1-19 (87–120)
[7] The prime divisors of Fibonacci numbers, Pacific J. Math., Volume 11 (1961) no. 1, pp. 379-386
Cited by Sources:
Comments - Policy