Comptes Rendus
Differential Geometry
A new quantity in Finsler geometry
Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 81-83.

In this Note, we define a new quantity and call it C-projective Weyl curvature. We prove that for a Finsler manifold of scalar flag curvature with dimension n3, H=0 if and only if W˜=0.

Dans cette Note, nous définissons une nouvelle quantité que nous appelons courbure C-projective de Weyl. Nous montrons que pour une variété de Finsler de dimension n3 ayant une courbure de drapeaux de type scalaire, on a H=0 si et seulement si W˜=0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.11.015

Behzad Najafi 1; Akbar Tayebi 2

1 Faculty of Science, Department of Mathematics, Shahed University, Tehran, Iran
2 Faculty of Science, Department of Mathematics, Qom University, Qom, Iran
@article{CRMATH_2011__349_1-2_81_0,
     author = {Behzad Najafi and Akbar Tayebi},
     title = {A new quantity in {Finsler} geometry},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {81--83},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.015},
     language = {en},
}
TY  - JOUR
AU  - Behzad Najafi
AU  - Akbar Tayebi
TI  - A new quantity in Finsler geometry
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 81
EP  - 83
VL  - 349
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2010.11.015
LA  - en
ID  - CRMATH_2011__349_1-2_81_0
ER  - 
%0 Journal Article
%A Behzad Najafi
%A Akbar Tayebi
%T A new quantity in Finsler geometry
%J Comptes Rendus. Mathématique
%D 2011
%P 81-83
%V 349
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2010.11.015
%G en
%F CRMATH_2011__349_1-2_81_0
Behzad Najafi; Akbar Tayebi. A new quantity in Finsler geometry. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 81-83. doi : 10.1016/j.crma.2010.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.015/

[1] H. Akbar-Zadeh Sur les espaces de Finsler á courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., Volume 74 (1988), pp. 271-322

[2] B. Najafi; Z. Shen; A. Tayebi Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata, Volume 131 (2008), pp. 87-97

[3] X. Mo An Introduction to Finsler Geometry, World Scientific Publishers, 2006

[4] X. Mo On the non-Riemannian quantity H of a Finsler metric, Diff. Geom. Appl., Volume 27 (2009), pp. 7-14

Cited by Sources:

Comments - Policy