Comptes Rendus
Numerical Analysis
A compact cell-centered Galerkin method with subgrid stabilization
[Une méthode de Galerkine centrée aux mailles avec stencil compact et stabilisation de sous-grille]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 93-98.

On propose une méthode de Galerkine centrée aux mailles avec stencil compact et stabilisation de sous-grille pour des problèmes de diffusion anisotrope et hétérogène. On présente à la fois les résultats théoriques essentiels et une validation numérique.

In this work we propose a compact cell-centered Galerkin method with subgrid stabilization for anisotropic heterogeneous diffusion problems on general meshes. Both essential theoretical results and numerical validation are provided.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.017

Daniele A. Di Pietro 1

1 IFP Energies nouvelles, 1 & 4, avenue de bois Préau, 92852 Rueil-Malmaison cedex, France
@article{CRMATH_2011__349_1-2_93_0,
     author = {Daniele A. Di Pietro},
     title = {A compact cell-centered {Galerkin} method with subgrid stabilization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {93--98},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.017},
     language = {en},
}
TY  - JOUR
AU  - Daniele A. Di Pietro
TI  - A compact cell-centered Galerkin method with subgrid stabilization
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 93
EP  - 98
VL  - 349
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2010.11.017
LA  - en
ID  - CRMATH_2011__349_1-2_93_0
ER  - 
%0 Journal Article
%A Daniele A. Di Pietro
%T A compact cell-centered Galerkin method with subgrid stabilization
%J Comptes Rendus. Mathématique
%D 2011
%P 93-98
%V 349
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2010.11.017
%G en
%F CRMATH_2011__349_1-2_93_0
Daniele A. Di Pietro. A compact cell-centered Galerkin method with subgrid stabilization. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 93-98. doi : 10.1016/j.crma.2010.11.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.017/

[1] I. Aavatsmark; G.T. Eigestad; B.T. Mallison; J.M. Nordbotten A compact multipoint flux approximation method with improved robustness, Numer. Methods Partial Differential Equations, Volume 24 (2008) no. 5, pp. 1329-1360 | DOI

[2] L. Agélas; D.A. Di Pietro; J. Droniou The G method for heterogeneous anisotropic diffusion on general meshes, M2AN Math. Model. Numer. Anal., Volume 44 (2010) no. 4, pp. 597-625 | DOI

[3] L. Agélas; D.A. Di Pietro; R. Eymard; R. Masson An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes, IJFV, Volume 7 (2010) no. 1, pp. 1-29

[4] D.A. Di Pietro Cell centered Galerkin methods, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 31-34 | DOI

[5] D.A. Di Pietro; A. Ern; J.-L. Guermond Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 805-831 | DOI

[6] M.G. Edwards Unstructured control-volume distributed full tensor finite volume schemes with flow based grids, Comput. Geosci., Volume 6 (2002) no. 10, pp. 433-452 | DOI

[7] R. Eymard; Th. Gallouët; R. Herbin Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., Volume 30 (2010) no. 4 | DOI

Cité par Sources :

Commentaires - Politique