[Corps de nombres algébriques à degrés locaux bornés]
It is well known that if a field
Il est bien connu que si un corps
Accepté le :
Publié le :
Sara Checcoli 1 ; Umberto Zannier 2
@article{CRMATH_2011__349_1-2_11_0, author = {Sara Checcoli and Umberto Zannier}, title = {On fields of algebraic numbers with bounded local degrees}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--14}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.12.007}, language = {en}, }
Sara Checcoli; Umberto Zannier. On fields of algebraic numbers with bounded local degrees. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 11-14. doi : 10.1016/j.crma.2010.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.007/
[1] A note on heights in certain infinite extensions of
[2] Finite Solvable Groups, De Gruyter, Berlin/New York, 1992
[3] Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, Berlin, 1990
[4] Cohomology of Number Fields, Grundl. Math. Wiss., vol. 323, Springer, 1999
[5] Une « formule de masse » pour les extensions totalement ramifiées de degré donné d'un corps local, C. R. Acad. Sci. Paris, Volume 286 (1978), pp. 1031-1036
[6] On p-extensions, AMS. Transl., Ser. 2, Volume 4 (1956), pp. 59-72
- On a Galois property of fields generated by the torsion of an abelian variety, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 11, pp. 3530-3541 | DOI:10.1112/blms.13149 | Zbl:7953426
- Small heights in large non-abelian extensions, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 23 (2022) no. 3, pp. 1357-1393 | DOI:10.2422/2036-2145.201811_018 | Zbl:1507.11048
- Direct limits of adèle rings and their completions, Rocky Mountain Journal of Mathematics, Volume 50 (2020) no. 3, pp. 1021-1043 | DOI:10.1216/rmj.2020.50.1021 | Zbl:1453.11151
- A note on Galois groups and local degrees, Manuscripta Mathematica, Volume 159 (2019) no. 1-2, pp. 1-12 | DOI:10.1007/s00229-018-1039-7 | Zbl:1476.11139
- Tchebotarev theorems for function fields, Journal of Algebra, Volume 446 (2016), pp. 346-372 | DOI:10.1016/j.jalgebra.2015.08.020 | Zbl:1400.11150
- On the compositum of all degree
extensions of a number field, Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 655-672 | DOI:10.5802/jtnb.884 | Zbl:1360.11112 - On the Northcott property and other properties related to polynomial mappings, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 155 (2013) no. 1, pp. 1-12 | DOI:10.1017/s0305004113000042 | Zbl:1290.11139
- Fields of algebraic numbers with bounded local degrees and their properties, Transactions of the American Mathematical Society, Volume 365 (2013) no. 4, pp. 2223-2240 | DOI:10.1090/s0002-9947-2012-05712-6 | Zbl:1281.11098
Cité par 8 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier