In this Note we prove that the underlying almost complex structure to a non-Kähler almost Hermitian structure admitting a compatible connection with skew-symmetric torsion cannot be calibrated by a symplectic form even locally.
Dans cette Note on démontre que la structure presque complexe sous-jacente à une structure presque hermitienne non kälérienne admettant une connexion compatible avec une torsion antisymétrique ne peut pas, même localement, être calibrée par une forme symplectique.
Accepted:
Published online:
Luigi Vezzoni 1
@article{CRMATH_2011__349_7-8_429_0, author = {Luigi Vezzoni}, title = {On almost complex structures which are not compatible with symplectic forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {429--431}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.01.002}, language = {en}, }
Luigi Vezzoni. On almost complex structures which are not compatible with symplectic forms. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 429-431. doi : 10.1016/j.crma.2011.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.002/
[1] On the geometry of almost complex 6-manifolds, Asian J. Math., Volume 10 (2006) no. 3, pp. 561-605
[2] Submanifolds and special structures on the octonions, J. Differential Geom., Volume 17 (1982) no. 2, pp. 185-232
[3] Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., Volume 6 (2002), pp. 303-335
[4] Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 11–12, pp. 759-762
[5] Complex analytic coordinates in almost complex manifolds, Ann. Math. (2), Volume 65 (1957), pp. 391-404
[6] The singular set of J-holomorphic maps into projective algebraic varieties, J. Reine Angew. Math., Volume 570 (2004), pp. 47-87
[7] The singular set of integral currents, Ann. Math. (2), Volume 169 (2009) no. 3, pp. 741-794
[8] Holomorphic Curves in Symplectic Geometry (F. Audin et al., eds.), Progress in Math., vol. 117, Birkhäuser, 1994
[9] Some examples of non calibrable almost complex structures, Forum Math., Volume 14 (2002), pp. 869-876
Cited by Sources:
☆ This work was supported by the Project M.I.U.R. “Riemannian Metrics and Differentiable Manifolds” and by G.N.S.A.G.A. of I.N.d.A.M.
Comments - Policy