Let ω be a simply-connected domain in and let and be two symmetric matrix fields with components in . In this Note, we identify nonlinear compatibility conditions “of Donati type” that the components and must satisfy in order that there exists a vector field such that:
Soit ω un domaine simplement connexe de et soient et deux champs de matrices symétriques dont les composantes sont dans . Dans cette Note, on identifie et justifie des conditions non linéaires de compatibilité « de type Donati » que doivent satisfaire les composantes et afin quʼil existe un champ de vecteurs tel que :
Published online:
Philippe G. Ciarlet 1; Giuseppe Geymonat 2; Françoise Krasucki 3
@article{CRMATH_2013__351_9-10_405_0, author = {Philippe G. Ciarlet and Giuseppe Geymonat and Fran\c{c}oise Krasucki}, title = {Nonlinear {Donati} compatibility conditions for the nonlinear {Kirchhoff{\textendash}von} {K\'arm\'an{\textendash}Love} plate theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {405--409}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.05.012}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Giuseppe Geymonat AU - Françoise Krasucki TI - Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff–von Kármán–Love plate theory JO - Comptes Rendus. Mathématique PY - 2013 SP - 405 EP - 409 VL - 351 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2013.05.012 LA - en ID - CRMATH_2013__351_9-10_405_0 ER -
%0 Journal Article %A Philippe G. Ciarlet %A Giuseppe Geymonat %A Françoise Krasucki %T Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff–von Kármán–Love plate theory %J Comptes Rendus. Mathématique %D 2013 %P 405-409 %V 351 %N 9-10 %I Elsevier %R 10.1016/j.crma.2013.05.012 %G en %F CRMATH_2013__351_9-10_405_0
Philippe G. Ciarlet; Giuseppe Geymonat; Françoise Krasucki. Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff–von Kármán–Love plate theory. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 405-409. doi : 10.1016/j.crma.2013.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.05.012/
[1] On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132
[2] Mathematical Elasticity, Volume II: Theory of Plates, North-Holland, Amsterdam, 1997
[3] Linear and Nonlinear Functional Analysis with Applications, SIAM, 2013
[4] Another approach to linearized elasticity and a new proof of Kornʼs inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[5] P.G. Ciarlet, G. Geymonat, F. Krasucki, Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates, in preparation.
[6] Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates, Math. Models Methods Appl. Sci. (2013) (in press) | DOI
[7] On the existence of the Airy function in Lipschitz domains. Application to the traces of , C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 355-360
[8] Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL, Volume 123 (2005), pp. 175-182
[9] Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains, Commun. Pure Appl. Anal., Volume 8 (2009), pp. 295-309
[10] On Poincaréʼs and J.-L. Lionsʼ lemmas, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 27-30
Cited by Sources:
Comments - Policy