We study the Fourier series expansions in the strong operator topology for operator-valued Stieltjes convolutions of Marcinkiewicz r-classes against spectral decompositions of modulus-mean-bounded operators. The vector-valued harmonic analysis resulting can be viewed as an extension of traditional Calderón–Coifman–G. Weiss transference without being constrained by the latterʼs requirement of power-boundedness.
Cette note étudie (dans la topologie forte des opérateurs) les développements en séries de Fourier pour les « convolutions de Stieltjes » des fonctions dans les r-classes de Marcinkiewicz par , où E est la décomposition spectrale dʼune bijection linéaire arbitraire T telle que T soit un opérateur préservant la disjonction dont le module linéaire est à moyennes bornées. Lʼanalyse harmonique vectorielle qui en résulte étend le transfert traditionnel de Calderón–Coifman–G. Weiss, sans supposer les puissances uniformément bornées traditionnellement requises pour le transfert.
Accepted:
Published online:
Earl Berkson 1
@article{CRMATH_2013__351_21-22_813_0, author = {Earl Berkson}, title = {Marcinkiewicz \protect\emph{r}-classes and {Fourier} series expansions of operator ergodic {Stieltjes} convolutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {813--815}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.017}, language = {en}, }
TY - JOUR AU - Earl Berkson TI - Marcinkiewicz r-classes and Fourier series expansions of operator ergodic Stieltjes convolutions JO - Comptes Rendus. Mathématique PY - 2013 SP - 813 EP - 815 VL - 351 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2013.10.017 LA - en ID - CRMATH_2013__351_21-22_813_0 ER -
Earl Berkson. Marcinkiewicz r-classes and Fourier series expansions of operator ergodic Stieltjes convolutions. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 813-815. doi : 10.1016/j.crma.2013.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.017/
[1] Spectral theory and operator ergodic theory on super-reflexive Banach spaces, Stud. Math., Volume 200 (2010), pp. 221-246
[2] Rotation methods in operator ergodic theory, N.Y. J. Math., Volume 17 (2011), pp. 21-39 http://nyjm.albany.edu/j/2011/17-2v.pdf (located online at)
[3] Mean-boundedness and Littlewood–Paley for separation-preserving operators, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 1169-1189
[4] Shifts as models for spectral decomposability on Hilbert space, J. Oper. Theory, Volume 50 (2003), pp. 77-106
[5] Multiplicateurs de Fourier de et estimations quadratiques, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988), pp. 351-354
Cited by Sources:
Comments - Policy