In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski and entropy inequalities on the Heisenberg group . Our arguments use the Riemannian approximation of combined with optimal mass-transportation techniques.
Dans cette Note, nous présentons des versions géodésiques des inégalités de Borell–Brascamp–Lieb et de Brunn–Minkowski, et des inégalités d'entropie sur le groupe de Heisenberg . Nos démonstrations s'appuient sur l'approximation riemannienne de et sur des techniques de transport optimal.
Accepted:
Published online:
Zoltán M. Balogh 1; Alexandru Kristály 2, 3; Kinga Sipos 1
@article{CRMATH_2016__354_9_916_0, author = {Zolt\'an M. Balogh and Alexandru Krist\'aly and Kinga Sipos}, title = {Geodesic interpolation inequalities on {Heisenberg} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {916--919}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.07.001}, language = {en}, }
TY - JOUR AU - Zoltán M. Balogh AU - Alexandru Kristály AU - Kinga Sipos TI - Geodesic interpolation inequalities on Heisenberg groups JO - Comptes Rendus. Mathématique PY - 2016 SP - 916 EP - 919 VL - 354 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2016.07.001 LA - en ID - CRMATH_2016__354_9_916_0 ER -
Zoltán M. Balogh; Alexandru Kristály; Kinga Sipos. Geodesic interpolation inequalities on Heisenberg groups. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 916-919. doi : 10.1016/j.crma.2016.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.001/
[1] Optimal mass transportation in the Heisenberg group, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 261-301
[2] Geometric inequalities on Heisenberg groups, 2016 | arXiv
[3] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., Volume 146 (2001) no. 2, pp. 219-257
[4] Absolute continuity of Wasserstein geodesics in the Heisenberg group, J. Funct. Anal., Volume 255 (2008) no. 1, pp. 133-141
[5] Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., Volume 20 (2010), pp. 124-159
[6] Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not., Volume 13 (2009)
[7] Ricci curvature for metric measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991
[8] Polar factorization of maps in Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589-608
[9] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131
[10] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177
[11] Optimal Transport. Old and New, Fundamental Principles of Mathematical Sciences, vol. 338, Springer-Verlag, Berlin, 2009
[12] Topics in Optimal Transportation, American Mathematical Society, Providence, RI, USA, 2003
Cited by Sources:
Comments - Policy