In this paper, we prove that if , and , , then all problems (1), (2) admit solutions in the class , which are in fact -regular provided there are no pathological solutions to the Euler equation (5). Here is called a pathological solution to equation (5) if the equation holds in , as , and . We also prove that the lack of pathological solutions to the Euler equation results in the lack of the Lavrentiev phenomenon, see Theorem 9; no growth assumptions from below are required in this result.
Dans cette Note, nous démontrons que si , et , , alors tous les problèmes (1)–(2) admettent des solutions dans la classe , qui sont en fait -régulières pourvu que l'équation d'Euler (5) n'ait pas de solution pathologique. Ici, une solution de (5) est dite pathologique si l'équation est satisfaite dans , lorsque et . Nous montrons également (voir Théorème 9), que l'absence de solution pathologique à l'équation d'Euler entraîne l'absence de phénomène de Lavrentiev ; aucune hypothèse de croissance minimale n'est requise pour ce résultat.
Accepted:
Published online:
Richard Gratwick 1; Aidys Sedipkov 2, 3; Mikhail Sychev 2, 3; Aris Tersenov 2, 3
@article{CRMATH_2017__355_3_359_0, author = {Richard Gratwick and Aidys Sedipkov and Mikhail Sychev and Aris Tersenov}, title = {Pathological solutions to the {Euler{\textendash}Lagrange} equation and existence/regularity of minimizers in one-dimensional variational problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {359--362}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.020}, language = {en}, }
TY - JOUR AU - Richard Gratwick AU - Aidys Sedipkov AU - Mikhail Sychev AU - Aris Tersenov TI - Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems JO - Comptes Rendus. Mathématique PY - 2017 SP - 359 EP - 362 VL - 355 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2017.01.020 LA - en ID - CRMATH_2017__355_3_359_0 ER -
%0 Journal Article %A Richard Gratwick %A Aidys Sedipkov %A Mikhail Sychev %A Aris Tersenov %T Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems %J Comptes Rendus. Mathématique %D 2017 %P 359-362 %V 355 %N 3 %I Elsevier %R 10.1016/j.crma.2017.01.020 %G en %F CRMATH_2017__355_3_359_0
Richard Gratwick; Aidys Sedipkov; Mikhail Sychev; Aris Tersenov. Pathological solutions to the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 359-362. doi : 10.1016/j.crma.2017.01.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.020/
[1] One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation, Arch. Ration. Mech. Anal., Volume 90 (1985) no. 4, pp. 325-388
[2] One-Dimensional Variational Problems. An Introduction, Oxford University Press, UK, 1998
[3] Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., Volume 289 (1984) no. 1, pp. 73-98
[4] On the conditions under which the Euler equation or the maximum principle hold, Appl. Math. Optim., Volume 12 (1984), pp. 73-79
[5] Singular minimizers in the calculus of variations, Arch. Ration. Mech. Anal., Volume 101 (1988), pp. 161-177
[6] Singular sets and the Lavrentiev phenomenon, Proc. R. Soc. Edinb., Sect. A, Volume 145 (2015) no. 3, pp. 513-533
[7] Regularity and singularity phenomena for one-dimensional variational problems with singular ellipticity, Pure Appl. Funct. Anal., Volume 1 (2016) no. 3, pp. 397-416
[8] A condition on the value function both necessary and sufficient for full regularity of minimizers of one-dimensional variational problems, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 119-133
[9] On a classical problem of the calculus of variations, Sov. Math. Dokl., Volume 44 (1992), pp. 116-120
[10] On the question of regularity of the solutions of variational problems, Russian Acad. Sci. Sb. Math., Volume 75 (1993), pp. 535-556
[11] Examples of classically unsolvable regular scalar variational problems satisfying standard growth conditions, Sib. Math. J., Volume 37 (1996), pp. 1212-1227
[12] Another theorem of classical solvability ‘in small’ for one-dimensional variational problems, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 269-294
[13] On Legendre and Weierstrass conditions in one-dimensional variational problems, J. Convex Anal. (2017) (in press)
[14] Sur une méthode direte du calcul des variations, Rend. Circ. Mat. Palermo, Volume 39 (1915), pp. 233-264
[15] Fondamenti di calcolo delle Variazioni, vol. II, Zanichelli, Bologna, Italy, 1921
Cited by Sources:
☆ This research was partially supported by the European Research Council/ERC Grant Agreement No. 291497 and by the grants RFBR N 15-01-08275 and 0314-2015-0012 from the Presidium of RAS.
Comments - Policy