Comptes Rendus
Algebraic Geometry, Differential Geometry
On the Morse–Novikov Cohomology of blowing up complex manifolds
Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 67-77.

Inspired by the recent works of S. Rao–S. Yang–X.-D. Yang and L. Meng on the blow-up formulae for de Rham and Morse–Novikov cohomology groups, we give a new simple proof of the blow-up formula for Morse–Novikov cohomology by introducing the relative Morse–Novikov cohomology group via sheaf cohomology theory and presenting the explicit isomorphism therein.

Inspiré par les récents travaux de S. Rao, S. Yang, X.-D. Yang et L. Meng sur les formules donnant le comportement des groupes de cohomologie de de Rham et Morse-Novikov dans les éclatements, nous donnons une nouvelle preuve simple de la formule pour la cohomologie de Morse-Novikov en introduisant le groupe de cohomologie de Morse-Novikov relatif via la cohomologie des faisceaux et en explicitant l’isomorphisme de la formule.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.12

Yongpan Zou 1

1 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_1_67_0,
     author = {Yongpan Zou},
     title = {On the {Morse{\textendash}Novikov} {Cohomology} of blowing up complex manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {67--77},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.12},
     language = {en},
}
TY  - JOUR
AU  - Yongpan Zou
TI  - On the Morse–Novikov Cohomology of blowing up complex manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 67
EP  - 77
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.12
LA  - en
ID  - CRMATH_2020__358_1_67_0
ER  - 
%0 Journal Article
%A Yongpan Zou
%T On the Morse–Novikov Cohomology of blowing up complex manifolds
%J Comptes Rendus. Mathématique
%D 2020
%P 67-77
%V 358
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmath.12
%G en
%F CRMATH_2020__358_1_67_0
Yongpan Zou. On the Morse–Novikov Cohomology of blowing up complex manifolds. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 67-77. doi : 10.5802/crmath.12. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.12/

[1] Daniele Angella; Hisashi Kasuya Hodge theory for twisted differentials, Complex Manifolds, Volume 1 (2014), pp. 64-85 | MR | Zbl

[2] Florin A. Belgun On the metric structure of non-Kähler complex surfaces, Math. Ann., Volume 317 (2000) no. 1, pp. 1-40 | DOI | MR | Zbl

[3] Glen E. Bredon Sheaf theory, Graduate Texts in Mathematics, 170, Springer, 1997 | MR | Zbl

[4] Fouzia Guedira; André Lichnerowicz Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl., IX. Sér., Volume 63 (1984) no. 4, pp. 407-484 | Zbl

[5] Birger Iversen Cohomology of sheaves, Universitext, Springer, 1986 | Zbl

[6] John M. Lee Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013 | MR | Zbl

[7] André Lichnerowicz Les variétés de Poisson et leurs algébres de Lie associées, J. Differ. Geom., Volume 12 (1977), pp. 253-300 | DOI | Zbl

[8] Lingxu Meng Morse-Novikov cohomology for blow-ups of complex manifolds, (2018) (https://arxiv.org/abs/1806.06622v3)

[9] Lingxu Meng Mayer–Vietoris systems and their applications (2019) (https://arxiv.org/abs/1811.10500v3)

[10] S. P. Novikov The Hamiltonian formalism and a multivalued analogue of Morse theory (Russian), Usp. Mat. Nauk, Volume 37 (1982) no. 5, pp. 3-43 | Zbl

[11] Liviu Ornea; Victor Vuletescu; Misha Verbitsky Classification of non-Kähler surfaces and locally conformally Kähler geometry (2018) (https://arxiv.org/abs/1810.05768v2)

[12] Sheng Rao; Song Yang; Xiangdong Yang Dolbeault cohomologies of blowing up complex manifolds, J. Math. Pures Appl., Volume 130 (2019), pp. 68-92 | MR | Zbl

[13] Sheng Rao; Song Yang; Xiangdong Yang Dolbeault cohomologies of blowing up complex manifolds II: bundle-valued case, J. Math. Pures Appl., Volume 130 (2020), pp. 1-38 | DOI | MR | Zbl

[14] Sheng Rao; Song Yang; Xiangdong Yang; Xun Yu Hodge cohomology on blow-ups along subvarieties (2019) (https://arxiv.org/abs/1907.13281)

[15] Claire Voisin Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002 (translated from the French original by Leila Schneps) | MR | Zbl

[16] R. O. jun. Wells Comparison of de Rham and Dolbeault cohomology for proper surjective mappings, Pac. J. Math., Volume 53 (1974), pp. 281-300 | DOI | MR | Zbl

[17] Xiangdong Yang; Guosong Zhao A note on the Morse-Novikov cohomology of blow-ups of locally conformal Kähler manifolds, Bull. Aust. Math. Soc., Volume 91 (2015) no. 1, pp. 155-166 | DOI | Zbl

[18] Yongpan Zou Morse–Novikov cohomology of blowing up complex manifolds and deformation of CR structure, Masters thesis, Wuhan University (2019)

Cited by Sources:

Comments - Policy