Comptes Rendus
Analyse numérique
A functional equation with polynomial solutions and application to Neural Networks
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1059-1072.

We construct and discuss a functional equation with contraction property. The solutions are real univariate polynomials. The series solving the natural fixed point iterations have immediate interpretation in terms of Neural Networks with recursive properties and controlled accuracy.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.124
Classification : 65Q20, 65Y99, 78M32
Bruno Després 1 ; Matthieu Ancellin 2

1 Laboratoire Jacques-Louis Lions, Sorbonne Université, 4 place Jussieu, 75005 Paris, France and Institut Universitaire de France, France
2 Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_9-10_1059_0,
     author = {Bruno Despr\'es and Matthieu Ancellin},
     title = {A functional equation with polynomial solutions and application to {Neural} {Networks}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1059--1072},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.124},
     language = {en},
}
TY  - JOUR
AU  - Bruno Després
AU  - Matthieu Ancellin
TI  - A functional equation with polynomial solutions and application to Neural Networks
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1059
EP  - 1072
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.124
LA  - en
ID  - CRMATH_2020__358_9-10_1059_0
ER  - 
%0 Journal Article
%A Bruno Després
%A Matthieu Ancellin
%T A functional equation with polynomial solutions and application to Neural Networks
%J Comptes Rendus. Mathématique
%D 2020
%P 1059-1072
%V 358
%N 9-10
%I Académie des sciences, Paris
%R 10.5802/crmath.124
%G en
%F CRMATH_2020__358_9-10_1059_0
Bruno Després; Matthieu Ancellin. A functional equation with polynomial solutions and application to Neural Networks. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1059-1072. doi : 10.5802/crmath.124. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.124/

[1] Alain Bensoussan; Yiqun Li; Dinh Phan Cao Nguyen; Minh-Binh Tran; Sheung Chi Phillip Yam; Xiang Zhou Machine Learning and Control Theory (https://arxiv.org/abs/2006.05604)

[2] Mikael Bodén A Guide to Recurrent Neural Networks and Backpropagation, 2001 (published in Dallas project, SICS technical report)

[3] Philippe G. Ciarlet Linear and nonlinear functional analysis with applications, Other Titles in Applied Mathematics, 130, Society for Industrial and Applied Mathematics, (SIAM), 2013 | Zbl

[4] George Cybenko Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, Volume 2 (1989) no. 4, pp. 303-314 | DOI | MR | Zbl

[5] Ingrid C. Daubechies; Ronald A. DeVore; Simon Foucart; Boris L. Hanin; Guergana Petrova Nonlinear Approximation and (Deep) ReLU Networks (https://arxiv.org/abs/1905.02199v1)

[6] Bruno Després Machine Learning, adaptive numerical approximation and VOF methods, 2020 (colloquium LJLL/Sorbonne university, https://www.youtube.com/watch?v=OPKFYe01hH4)

[7] Bruno Després; Hervé Jourdren Machine learning design of volume of fluid schemes for compressible flows, J. Comput. Phys., Volume 408 (2020), 109275 | DOI | MR

[8] Ian Goodfellow; Yoshua Bengio; Aaron Courville Deep Learning, Adaptive Computation and Machine Learning, MIT Press, 2016 | Zbl

[9] Masayoshi Hata; Masaya Yamaguti Weierstrass’s function and chaos, Hokkaido Math. J., Volume 12 (1983) no. 3, pp. 333-342 | MR | Zbl

[10] Masayoshi Hata; Masaya Yamaguti The Takagi Function and Its Generalization, Japan J. Appl. Math., Volume 1 (1984) no. 1, pp. 183-199 | DOI | MR | Zbl

[11] Juncai He; Lin Li; Jinchao Xu; Chunyue Zheng ReLU Deep Neural Networks and Linear Finite Elements, J. Comput. Math., Volume 38 (2020) no. 3, pp. 502-527

[12] Bo Li; Shanshan Tang; Haijun Yu Better Approximations of High Dimensional Smooth Functions by Deep Neural Networks with Rectified Power Units, Commun. Comput. Phys., Volume 27 (2019) no. 2, pp. 379-411 | MR

[13] Jianfeng Lu; Zuowei Shen; Haizhao Yang; Shijun Zhang Deep Network Approximation for Smooth Functions, 2020 (https://blog.nus.edu.sg/matzuows/publications/)

[14] Patrick K. Mogensen; Asbjørn N. Riseth Optim: A mathematical optimization package for Julia, J. Open Source Softw., Volume 3 (2018) no. 24, 615 | DOI

[15] Joost A. A. Opschoor; Philipp C. Petersen; Christoph Schwab Deep ReLU networks and high-order finite element methods, Anal. Appl. (Singap.), Volume 18 (2020) no. 5, pp. 715-770 | DOI | MR | Zbl

[16] Jarett Revels; Miles Lubin; Theodore Papamarkou Forward-Mode Automatic Differentiation in Julia (2016) (https://arxiv.org/abs/1607.07892)

[17] Dmitry Yarotsky Error bounds for approximations with deep ReLU networks, Neural Netw., Volume 97 (2017), pp. 103-114 | DOI | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A convergent Deep Learning algorithm for approximation of polynomials

Bruno Després

C. R. Math (2023)


Discrete moments models for Vlasov equations with non constant strong magnetic limit

Frédérique Charles; Bruno Després; Ruiyang Dai; ...

C. R. Méca (2023)


A numerical strategy for a high frequency electromagnetic scattering problem in a mixed formulation

Katherine Mer-Nkonga; Michel Mandallena; David Goudin; ...

C. R. Phys (2006)