Comptes Rendus
Group Theory
A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1135-1138.

Let I n (G) denote the number of elements of order n in a finite group G. Malinowska recently asked “what is the smallest positive integer k such that whenever there exist two nonabelian finite simple groups S and G with prime divisors p 1 ,,p k of |G| and |S| satisfying 2=p 1 <<p k and I p i (G)=I p i (S) for all i{1,,k}, we have that |G|=|S|?”. This paper resolves Malinowska’s question.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.130
Classification: 20D60, 20D06

Chimere Stanley Anabanti 1

1 Institut für Analysis und Zahlentheorie, Technische Universität Graz, Austria.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_11-12_1135_0,
     author = {Chimere Stanley Anabanti},
     title = {A question of {Malinowska} on sizes of finite nonabelian simple groups in relation to involution sizes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1135--1138},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.130},
     language = {en},
}
TY  - JOUR
AU  - Chimere Stanley Anabanti
TI  - A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1135
EP  - 1138
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.130
LA  - en
ID  - CRMATH_2020__358_11-12_1135_0
ER  - 
%0 Journal Article
%A Chimere Stanley Anabanti
%T A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes
%J Comptes Rendus. Mathématique
%D 2020
%P 1135-1138
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.130
%G en
%F CRMATH_2020__358_11-12_1135_0
Chimere Stanley Anabanti. A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1135-1138. doi : 10.5802/crmath.130. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.130/

[1] Chimere S. Anabanti A counterexample to Zarrin’s Conjecture on sizes of finite nonabelian simple groups in relation to involution sizes, Arch. Math., Volume 112 (2019) no. 3, pp. 225-226 | DOI | MR | Zbl

[2] Emil Artin The Orders of the Classical Simple Groups, Commun. Pure Appl. Math., Volume 8 (1955), pp. 455-472 | DOI | MR | Zbl

[3] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system, 2019 (Version 2.24–5, http://magma.maths.usyd.edu.au/calc/)

[4] Daniel Gorenstein; Richard Lyons; Ronald Solomon The Classification of the Finite Simple Groups. Part I, Chapter A: Almost simple K-groups, Mathematical Surveys and Monographs, 40, American Mathematical Society, 1998 | Zbl

[5] The GAP Group GAP – Groups, Algorithms, and Programming, 2020 (Version 4.11.0, https://www.gap-system.org)

[6] Marcel Herzog On the classification of finite simple groups by the number of involutions, Proc. Am. Math. Soc., Volume 77 (1979) no. 3, pp. 313-314 | DOI | MR | Zbl

[7] Wolfgang Kimmerle; Richard Lyons; Sandling Robert; David N. Teague Composition factors from the group ring and Artin’s theorem on orders of simple groups (3), Volume 60, London Mathematical Society, 1990 no. 1, pp. 89-122 | MR | Zbl

[8] Izabela Agata Malinowska Finite groups with few normalizers or involutions, Arch. Math., Volume 112 (2019) no. 5, pp. 459-465 | DOI | MR | Zbl

[9] Mohammad Zarrin A counterexample to Herzog’s Conjecture on the number of involutions, Arch. Math., Volume 111 (2018) no. 4, pp. 349-351 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy