Comptes Rendus
Probability Theory
On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1231-1238.

This paper proves the Baum–Katz theorem for sequences of pairwise independent identically distributed random variables with general norming constants under optimal moment conditions. The proof exploits some properties of slowly varying functions and the de Bruijn conjugates, and uses the techniques developed by Rio (1995) to avoid using the maximal type inequalities.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.139
Classification: 60F15

Lê Vǎn Thành 1

1 Department of Mathematics, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_11-12_1231_0,
     author = {L\^e Vǎn Th\`anh},
     title = {On the {Baum{\textendash}Katz} theorem for sequences of pairwise independent random variables with regularly varying normalizing constants},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1231--1238},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.139},
     language = {en},
}
TY  - JOUR
AU  - Lê Vǎn Thành
TI  - On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1231
EP  - 1238
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.139
LA  - en
ID  - CRMATH_2020__358_11-12_1231_0
ER  - 
%0 Journal Article
%A Lê Vǎn Thành
%T On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants
%J Comptes Rendus. Mathématique
%D 2020
%P 1231-1238
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.139
%G en
%F CRMATH_2020__358_11-12_1231_0
Lê Vǎn Thành. On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1231-1238. doi : 10.5802/crmath.139. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.139/

[1] Vu T. Ngoc Anh; Nguyen T. Thanh Hien; Lê Vǎn Thành; Vo T. Hong Van The Marcinkiewicz–Zygmund-type strong law of large numbers with general normalizing sequences, J. Theor. Probab. (2019), pp. 1-18 | DOI

[2] Leonard E. Baum; Melvin Katz Convergence rates in the law of large numbers, Trans. Am. Math. Soc., Volume 120 (1965) no. 1, pp. 108-123 | DOI | MR | Zbl

[3] Nicholas H. Bingham; Charles M. Goldie; Jozef L. Teugels Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1989 | MR | Zbl

[4] Ranko Bojanic; Eugene Seneta Slowly varying functions and asymptotic relations, J. Math. Anal. Appl., Volume 34 (1971) no. 2, pp. 302-315 | DOI | MR | Zbl

[5] Sandor Csörgő; Károly Tandori; Vilmos Totik On the strong law of large numbers for pairwise independent random variables, Acta Math. Hung., Volume 42 (1983) no. 3-4, pp. 319-330 | MR | Zbl

[6] Nasrollah Etemadi An elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 55 (1981) no. 1, pp. 119-122 | DOI | MR | Zbl

[7] Janos Galambos; Eugene Seneta Regularly varying sequences, Proc. Am. Math. Soc., Volume 41 (1973) no. 1, pp. 110-116 | DOI | MR | Zbl

[8] Alexander Martikainen On the strong law of large numbers for sums of pairwise independent random variables, Stat. Probab. Lett., Volume 25 (1995) no. 1, pp. 21-26 | DOI | MR | Zbl

[9] Alexander I. Martikaĭnen A remark on the strong law of large numbers for sums of pairwise independent random variables, J. Math. Sci., Volume 75 (1995) no. 5, pp. 1944-1946 | DOI | MR | Zbl

[10] Emmanuel Rio Vitesses de convergence dans la loi forte pour des suites dépendantes (Rates of convergence in the strong law for dependent sequences), C. R. Acad. Sci. Paris, Volume 320 (1995) no. 4, pp. 469-474 | MR | Zbl

[11] Eugene Seneta An interpretation of some aspects of Karamata’s theory of regular variation, Publ. Inst. Math., Volume 15 (1973) no. 29, pp. 111-119 | MR | Zbl

[12] Eugene Seneta Regularly varying functions, Lecture Notes in Mathematics, 508, Springer, 1976 | MR | Zbl

Cited by Sources:

Comments - Policy