By studying the variable denominators introduced by X. Zhou–L. Zhu, we generalize the results of D. Popovici for the extension theorem for jets. As a direct corollary, we also give a generalization of T. Ohsawa–K. Takegoshi’s extension theorem to a jet version.
Accepted:
Published online:
Keywords: Continuation of analytic objects in several complex variables; Sheaves and cohomology of sections of holomorphic vector bundles, general results, Kähler manifolds, Exhaustion functions
Sheng Rao 1, 2; Runze Zhang 3
@article{CRMATH_2021__359_2_181_0, author = {Sheng Rao and Runze Zhang}, title = {$L^2$ extension theorem for jets with variable denominators}, journal = {Comptes Rendus. Math\'ematique}, pages = {181--193}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.167}, language = {en}, }
Sheng Rao; Runze Zhang. $L^2$ extension theorem for jets with variable denominators. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 181-193. doi : 10.5802/crmath.167. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.167/
[1] A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | DOI | MR | Zbl
[2] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[3] extension of -closed forms on weakly pseudoconvex Kähler manifolds (2020) (https://arxiv.org/abs/2009.14101)
[4] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 457-511 | DOI | Numdam | Zbl
[5] On the Ohsawa–Takegoshi–Manivel extension theorem, Complex analysis and geometry (Paris, 1997) (Progress in Mathematics), Volume 188, Birkhäuser, 2000, pp. 47-82 | DOI | MR | Zbl
[6] Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Advanced Lectures in Mathematics (ALM)), Volume 35, International Press, 2016, pp. 191-222 | MR | Zbl
[7] A solution of an extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl
[8] On the Ohsawa–Takegoshi extension theorem and the twisted Bochner–Kodaira identity, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 13-14, pp. 797-800 | DOI | MR | Zbl
[9] The optimal jet extension of Ohsawa–Takegoshi type, Nagoya Math. J., Volume 239 (2020), pp. 153-172 | DOI | MR | Zbl
[10] Un théorème de prolongement de sections holomorphes d’un fibré hermitien, Math. Z., Volume 212 (1993) no. 1, pp. 107-122 | DOI | Zbl
[11] Analytic inversion of adjunction: extension theorems with gain, Ann. Inst. Fourier, Volume 57 (2007) no. 3, pp. 703-718 | DOI | Numdam | MR | Zbl
[12] Extension of jets with estimates, and an application (2017) (https://arxiv.org/abs/1707.04483)
[13] On the extension of holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204 | DOI | Zbl
[14] extension for jets of holomorphic sections of a hermitian line bundle, Nagoya Math. J., Volume 180 (2005), pp. 1-34 | DOI | MR | Zbl
[15] An optimal extension theorem on weakly pseudoconvex Kähler manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | DOI
[16] Siu’s lemma, optimal extension and applications to twisted pluricanonical sheaves, Math. Ann., Volume 377 (2020) no. 1-2, pp. 675-722 | DOI | MR | Zbl
[17] On the Ohsawa–Takegoshi extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601 | MR | Zbl
Cited by Sources:
Comments - Policy