logo CRAS
Comptes Rendus. Mathématique
Algebraic geometry, Number theory
Finiteness theorems for algebraic tori over function fields
Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 939-944.

We present a number of finiteness results for algebraic tori (and, more generally, for algebraic groups with toric connected component) over two classes of fields: finitely generated fields and function fields of algebraic varieties over fields of type (F), as defined by J.-P. Serre.

Nous présentons plusieurs résultats de finitude pour les tores (et, plus généralement, pour les groupes algébriques dont la composante connexe est un tore) définis sur les corps de type fini et les corps de fonctions des variétés algébriques définies sur les corps satisfaisant la condition (F) de Serre.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/crmath.248
Andrei S. Rapinchuk 1; Igor A. Rapinchuk 2

1 Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_8_939_0,
     author = {Andrei S. Rapinchuk and Igor A. Rapinchuk},
     title = {Finiteness theorems for algebraic tori over function fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {939--944},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {8},
     year = {2021},
     doi = {10.5802/crmath.248},
     language = {en},
}
TY  - JOUR
TI  - Finiteness theorems for algebraic tori over function fields
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 939
EP  - 944
VL  - 359
IS  - 8
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.248
DO  - 10.5802/crmath.248
LA  - en
ID  - CRMATH_2021__359_8_939_0
ER  - 
%0 Journal Article
%T Finiteness theorems for algebraic tori over function fields
%J Comptes Rendus. Mathématique
%D 2021
%P 939-944
%V 359
%N 8
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.248
%R 10.5802/crmath.248
%G en
%F CRMATH_2021__359_8_939_0
Andrei S. Rapinchuk; Igor A. Rapinchuk. Finiteness theorems for algebraic tori over function fields. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 939-944. doi : 10.5802/crmath.248. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.248/

[1] Armand Borel Some finiteness properties of adele groups over number fields, Publ. Math., Inst. Hautes Étud. Sci., Volume 16 (1963), pp. 101-126 | Numdam | MR | Zbl

[2] Armand Borel; Jean-Pierre Serre Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., Volume 39 (1964), pp. 111-164 | DOI | Zbl

[3] Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk Spinor groups with good reduction, Compos. Math., Volume 155 (2019) no. 3, pp. 484-527 | DOI | MR | Zbl

[4] Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk The finiteness of the genus of a finite-dimensional division algebra, and some generalizations, Isr. J. Math., Volume 236 (2020) no. 2, pp. 747-799 | DOI | MR | Zbl

[5] Hélène Esnault; Mark Shusterman; Vasudevan Srinivas Finite presentation of the tame fundamental groups (2021) https://arxiv.org/abs/2102.13424 (preprint)

[6] Philippe Gille; Laurent Moret-Bailly Actions algébriques de groupes arithmétiques, Torsors, étale homotopy and applications to rational points (London Mathematical Society Lecture Note Series), Volume 405, Cambridge University Press, 2013, pp. 231-249 | DOI | Zbl

[7] Revêtements étales et groupe fondamentale (SGA 1) (Alexander Grothendieck; Michèle Raynaud, eds.), Lecture Notes in Mathematics, 224, Springer, 1971 | Zbl

[8] Shinya Harada; Toshiro Hiranouchi Smallness of fundamental groups of arithmetic schemes, J. Number Theory, Volume 129 (2009) no. 11, pp. 2702-2712 | DOI | MR | Zbl

[9] Bruno Kahn Sur le groupe des classes d’un schéma arithmétique, Bull. Soc. Math. Fr., Volume 134 (2006) no. 3, pp. 395-415 | DOI | Zbl

[10] Vladimir Platonov; Andrei S. Rapinchuk Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 | MR | Zbl

[11] Andrei S. Rapinchuk; Igor A. Rapinchuk Linear algebraic groups with good reduction, Res. Math. Sci., Volume 7 (2020) no. 3, 28, 65 pages | MR | Zbl

[12] Michèle Raynaud Propriétés de finitude du groupe fondamental, SGA 7 I (Lecture Notes in Mathematics), Volume 288, Springer, 1972, pp. 25-31 | MR | Zbl

[13] Jean-Pierre Serre Galois cohomology, Springer, 1997 | Zbl

[14] Emmanuel Ullmo; Andrei Yafaev Galois orbits and equidistribution of special subvarieties: towards the André–Oort conjecture, Ann. Math., Volume 180 (2014) no. 3, pp. 823-865 | DOI | Zbl

[15] Valentin Voskresenskiĭ Algebraic Groups and Their Birational Invariants, Translations of Mathematical Monographs, 179, American Mathematical Society, 1998 | MR

Cited by Sources: