Let be the cyclic group of order , a divisor of and a divisor of . We introduce the set of -free elements of and derive a lower bound for the number of elements for which is -free and is -free, where . As an application, we consider the existence of -primitive points on curves like and find, in particular, all the odd prime powers for which the elliptic curves contain an -primitive point.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.328
Keywords: finite fields, character sums, elliptic curves
Stephen D. Cohen 1; Giorgos Kapetanakis 2; Lucas Reis 3
CC-BY 4.0
@article{CRMATH_2022__360_G6_641_0,
author = {Stephen D. Cohen and Giorgos Kapetanakis and Lucas Reis},
title = {The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness},
journal = {Comptes Rendus. Math\'ematique},
pages = {641--652},
year = {2022},
publisher = {Acad\'emie des sciences, Paris},
volume = {360},
doi = {10.5802/crmath.328},
zbl = {07547263},
language = {en},
}
TY - JOUR
AU - Stephen D. Cohen
AU - Giorgos Kapetanakis
AU - Lucas Reis
TI - The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness
JO - Comptes Rendus. Mathématique
PY - 2022
SP - 641
EP - 652
VL - 360
PB - Académie des sciences, Paris
DO - 10.5802/crmath.328
LA - en
ID - CRMATH_2022__360_G6_641_0
ER -
%0 Journal Article
%A Stephen D. Cohen
%A Giorgos Kapetanakis
%A Lucas Reis
%T The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness
%J Comptes Rendus. Mathématique
%D 2022
%P 641-652
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.328
%G en
%F CRMATH_2022__360_G6_641_0
Stephen D. Cohen; Giorgos Kapetanakis; Lucas Reis. The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 641-652. doi: 10.5802/crmath.328
[1] Primitive values of quadratic polynomials in a finite field, Math. Comput., Volume 88 (2019) no. 318, pp. 1903-1912 | MR | DOI | Zbl
[2] Elements of high order in Artin–Schreier extensions of finite fields , Finite Fields Appl., Volume 41 (2016), pp. 24-33 | Zbl | MR | DOI
[3] Primitive roots in a finite field, Trans. Am. Math. Soc., Volume 73 (1952), pp. 373-382 | Zbl | MR | DOI
[4] On special pairs of primitive elements over a finite field, Finite Fields Appl., Volume 73 (2021), 101839, 10 pages | Zbl | MR
[5] The orders of related elements of a finite field, Ramanujan J., Volume 7 (2003) no. 1-3, pp. 169-183 | Zbl | MR | DOI
[6] The primitive normal basis theorem — without a computer, J. Lond. Math. Soc., Volume 67 (2003) no. 1, pp. 41-56 | Zbl | MR | DOI
[7] The trace of 2-primitive elements of finite fields, Acta Arith., Volume 192 (2020) no. 4, pp. 397-419 | Zbl | MR | DOI
[8] The translate and line properties for 2-primitive elements in quadratic extensions, Int. J. Number Theory, Volume 16 (2020) no. 9, pp. 2027-2040 | Zbl | MR | DOI
[9] Finite field extensions with the line or translate property for -primitive elements, J. Aust. Math. Soc., Volume 111 (2021) no. 3, pp. 311-319 | Zbl | MR
[10] Linear combinations of primitive elements of a finite field, Finite Fields Appl., Volume 51 (2018), pp. 388-406 | Zbl | MR | DOI
[11] A proof of the conjecture of Cohen and Mullen on sums of primitive roots, Math. Comput., Volume 84 (2015) no. 296, pp. 2979-2986 | Zbl | MR | DOI
[12] Elements of provable high orders in finite fields, Proc. Am. Math. Soc., Volume 127 (1999) no. 6, pp. 1615-1623 | Zbl | MR
[13] Existence and properties of -normal elements over finite fields, Finite Fields Appl., Volume 24 (2013), pp. 170-183 | Zbl | MR | DOI
[14] Variations of the primitive normal basis theorem, Des. Codes Cryptography, Volume 87 (2018) no. 7, pp. 1459-1480 | Zbl | MR | DOI
[15] Primitive points on elliptic curves, Bull. Am. Math. Soc., Volume 83 (1977), pp. 289-292 | Zbl | MR | DOI
[16] Finite Fields, Encyclopedia of Mathematics and Its Applications, 20, Cambridge University Press, 1996 | DOI
[17] Handbook of Finite Fields (Gary L. Mullen; Daniel Panario, eds.), Discrete Mathematics and its Applications, CRC Press, 2013
[18] Elements of high order in finite fields of the form , Finite Fields Appl., Volume 19 (2013), p. 96-92 | Zbl | MR
Cited by Sources:
Comments - Policy
