Comptes Rendus
Differential Geometry
Leaves of stacky Lie algebroids
Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 217-226.

We show that the leaves of an LA-groupoid which pass through the unit manifold are, modulo a connectedness issue, Lie groupoids. We illustrate this phenomenon by considering the cotangent Lie algebroids of Poisson groupoids thus obtaining an interesting class of symplectic groupoids coming from their symplectic foliations. In particular, we show that for a (strict) Lie 2-group the coadjoint orbits of the units in the dual of its Lie 2-algebra are symplectic groupoids, meaning that the classical Kostant–Kirillov–Souriau symplectic forms on these special coadjoint orbits are multiplicative.

Nous montrons que les feuilles d’un groupoïde en algébroïde de Lie qui passent par la variété unité sont elles mêmes des groupoïdes de Lie, sous une condition de connexité. Ce résultat est appliqué aux algébroïdes de Lie cotangents des groupoïdes de Poisson. On obtient ainsi une classe intéressante de groupoïdes symplectiques associés à leurs feuilletages symplectiques. Nous montrons en particulier que pour un 2-groupe de Lie strict, les orbites coadjointes des unités dans le dual de sa 2-algèbre de Lie sont des groupoïdes symplectiques, en ce sens que les formes symplectiques classiques de Kostant-Kirillov-Souriau sur ces orbites coadjointes spéciales sont mutiplicatives.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.37

Daniel Álvarez 1

1 Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, Jardim Botânico, CEP 22460320, Rio de Janeiro, Brasil
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_2_217_0,
     author = {Daniel \'Alvarez},
     title = {Leaves of stacky {Lie} algebroids},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {217--226},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.37},
     language = {en},
}
TY  - JOUR
AU  - Daniel Álvarez
TI  - Leaves of stacky Lie algebroids
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 217
EP  - 226
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.37
LA  - en
ID  - CRMATH_2020__358_2_217_0
ER  - 
%0 Journal Article
%A Daniel Álvarez
%T Leaves of stacky Lie algebroids
%J Comptes Rendus. Mathématique
%D 2020
%P 217-226
%V 358
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.37
%G en
%F CRMATH_2020__358_2_217_0
Daniel Álvarez. Leaves of stacky Lie algebroids. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 217-226. doi : 10.5802/crmath.37. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.37/

[1] John C. Baez; Alissa S. Crans Higher Dimensional Algebra VI: Lie 2-algebras, Theory Appl. Categ., Volume 12 (2004) no. 15, pp. 492-528 | MR | Zbl

[2] John C. Baez; Aaron D. Lauda Higher Dimensional Algebra V: 2-Groups, Theory Appl. Categ. (2004) no. 12, pp. 423-491 | MR | Zbl

[3] Kai Behrend; Ping Xu Differentiable stacks and gerbes, J. Symplectic Geom., Volume 9 (2011) no. 3, pp. 285-341 | DOI | MR | Zbl

[4] Ronald Brown; Kirill C. H. Mackenzie Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, Volume 80 (1992) no. 3, pp. 237-272 | DOI | MR | Zbl

[5] Ronald Brown; Christopher B. Spencer G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wet., Proc., Ser. A, Volume 79 (1976) no. 4, pp. 296-302 | MR | Zbl

[6] Zhuo Chen; Mathieu Stiénon; Ping Xu Poisson 2-groups, J. Differ. Geom., Volume 94 (2013) no. 2, pp. 209-240 | DOI | Zbl

[7] A. Coste; Pierre Dazord; Alan Weinstein Groupoïdes symplectiques, Université Claude Bernard, Dép. de Mathématiques, 1987 | Numdam | Zbl

[8] Marius Crainic; Rui Loja Fernandes Integrability of Lie brackets, Ann. Math., Volume 157 (2003) no. 2, pp. 575-620 | DOI | MR | Zbl

[9] Marius Crainic; Rui Loja Fernandes Integrability of Poisson brackets, J. Differ. Geom., Volume 66 (2004) no. 1, pp. 71-137 | DOI | MR | Zbl

[10] Vladimir G. Drinfeld Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math., Dokl. (1983) no. 27, pp. 68-71 | Zbl

[11] Mikhail V. Karasev Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 50 (1986) no. 3, pp. 508-538 | MR | Zbl

[12] Jeffrey M. Lee Manifolds and Differential Geometry, Graduate Studies in Mathematics, 107, American Mathematical Society, 2009 | MR | Zbl

[13] Jiang-Hua Lu Multiplicative and affine Poisson structures on Lie groups, Ph. D. Thesis, University of California, Berkeley (1990)

[14] Jiang-Hua Lu; Alan Weinstein Groupoïdes symplectiques doubles des groupes de Lie–Poisson, C. R. Math. Acad. Sci. Paris, Volume 309 (1989) no. 18, pp. 951-954 | Zbl

[15] Kirill C. H. Mackenzie Double Lie algebroids and second-order geometry. I, Adv. Math., Volume 94 (1992) no. 2, pp. 180-239 | DOI | MR | Zbl

[16] Kirill C. H. Mackenzie; Ping Xu Lie bialgebroids and Poisson groupoids, Duke Math. J., Volume 73 (1994) no. 2, pp. 415-452 | DOI | MR | Zbl

[17] Ieke Moerdijk; Janez Mrčun Introduction to foliations and Lie groupoids, 91, Cambridge University Press, 2003 | MR | Zbl

[18] Behrang Noohi Fundamental groups of topological stacks with slice property, Algebr. Geom. Topol., Volume 8 (2008) no. 3, pp. 1333-1370 | DOI | MR | Zbl

[19] Michael A. Semenov-Tian-Shansky Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci., Volume 21 (1985) no. 6, pp. 1237-1260 | DOI | MR | Zbl

[20] L. Stefanini On morphic actions and integrability of LA-groupoids, Ph. D. Thesis, ETH Zürich (Switzerland) (2008)

[21] J. Waldron Lie Algebroids over Differentiable Stacks, Ph. D. Thesis, University of York (UK) (2014)

[22] Alan Weinstein The local structure of Poisson manifolds, J. Differ. Geom., Volume 18 (1983) no. 3, pp. 523-557 | DOI | MR | Zbl

[23] Alan Weinstein Symplectic groupoids and Poisson manifolds, Bull. Am. Math. Soc., Volume 16 (1987) no. 1, pp. 101-104 | DOI | MR | Zbl

[24] Alan Weinstein Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, Volume 40 (1988) no. 4, pp. 705-727 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy