We show that the leaves of an LA-groupoid which pass through the unit manifold are, modulo a connectedness issue, Lie groupoids. We illustrate this phenomenon by considering the cotangent Lie algebroids of Poisson groupoids thus obtaining an interesting class of symplectic groupoids coming from their symplectic foliations. In particular, we show that for a (strict) Lie 2-group the coadjoint orbits of the units in the dual of its Lie 2-algebra are symplectic groupoids, meaning that the classical Kostant–Kirillov–Souriau symplectic forms on these special coadjoint orbits are multiplicative.
Nous montrons que les feuilles d’un groupoïde en algébroïde de Lie qui passent par la variété unité sont elles mêmes des groupoïdes de Lie, sous une condition de connexité. Ce résultat est appliqué aux algébroïdes de Lie cotangents des groupoïdes de Poisson. On obtient ainsi une classe intéressante de groupoïdes symplectiques associés à leurs feuilletages symplectiques. Nous montrons en particulier que pour un -groupe de Lie strict, les orbites coadjointes des unités dans le dual de sa -algèbre de Lie sont des groupoïdes symplectiques, en ce sens que les formes symplectiques classiques de Kostant-Kirillov-Souriau sur ces orbites coadjointes spéciales sont mutiplicatives.
Revised:
Accepted:
Published online:
Daniel Álvarez 1
@article{CRMATH_2020__358_2_217_0, author = {Daniel \'Alvarez}, title = {Leaves of stacky {Lie} algebroids}, journal = {Comptes Rendus. Math\'ematique}, pages = {217--226}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.37}, language = {en}, }
Daniel Álvarez. Leaves of stacky Lie algebroids. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 217-226. doi : 10.5802/crmath.37. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.37/
[1] Higher Dimensional Algebra VI: Lie 2-algebras, Theory Appl. Categ., Volume 12 (2004) no. 15, pp. 492-528 | MR | Zbl
[2] Higher Dimensional Algebra V: 2-Groups, Theory Appl. Categ. (2004) no. 12, pp. 423-491 | MR | Zbl
[3] Differentiable stacks and gerbes, J. Symplectic Geom., Volume 9 (2011) no. 3, pp. 285-341 | DOI | MR | Zbl
[4] Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, Volume 80 (1992) no. 3, pp. 237-272 | DOI | MR | Zbl
[5] G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wet., Proc., Ser. A, Volume 79 (1976) no. 4, pp. 296-302 | MR | Zbl
[6] Poisson 2-groups, J. Differ. Geom., Volume 94 (2013) no. 2, pp. 209-240 | DOI | Zbl
[7] Groupoïdes symplectiques, Université Claude Bernard, Dép. de Mathématiques, 1987 | Numdam | Zbl
[8] Integrability of Lie brackets, Ann. Math., Volume 157 (2003) no. 2, pp. 575-620 | DOI | MR | Zbl
[9] Integrability of Poisson brackets, J. Differ. Geom., Volume 66 (2004) no. 1, pp. 71-137 | DOI | MR | Zbl
[10] Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math., Dokl. (1983) no. 27, pp. 68-71 | Zbl
[11] Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 50 (1986) no. 3, pp. 508-538 | MR | Zbl
[12] Manifolds and Differential Geometry, Graduate Studies in Mathematics, 107, American Mathematical Society, 2009 | MR | Zbl
[13] Multiplicative and affine Poisson structures on Lie groups, Ph. D. Thesis, University of California, Berkeley (1990)
[14] Groupoïdes symplectiques doubles des groupes de Lie–Poisson, C. R. Math. Acad. Sci. Paris, Volume 309 (1989) no. 18, pp. 951-954 | Zbl
[15] Double Lie algebroids and second-order geometry. I, Adv. Math., Volume 94 (1992) no. 2, pp. 180-239 | DOI | MR | Zbl
[16] Lie bialgebroids and Poisson groupoids, Duke Math. J., Volume 73 (1994) no. 2, pp. 415-452 | DOI | MR | Zbl
[17] Introduction to foliations and Lie groupoids, 91, Cambridge University Press, 2003 | MR | Zbl
[18] Fundamental groups of topological stacks with slice property, Algebr. Geom. Topol., Volume 8 (2008) no. 3, pp. 1333-1370 | DOI | MR | Zbl
[19] Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci., Volume 21 (1985) no. 6, pp. 1237-1260 | DOI | MR | Zbl
[20] On morphic actions and integrability of LA-groupoids, Ph. D. Thesis, ETH Zürich (Switzerland) (2008)
[21] Lie Algebroids over Differentiable Stacks, Ph. D. Thesis, University of York (UK) (2014)
[22] The local structure of Poisson manifolds, J. Differ. Geom., Volume 18 (1983) no. 3, pp. 523-557 | DOI | MR | Zbl
[23] Symplectic groupoids and Poisson manifolds, Bull. Am. Math. Soc., Volume 16 (1987) no. 1, pp. 101-104 | DOI | MR | Zbl
[24] Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, Volume 40 (1988) no. 4, pp. 705-727 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy