logo CRAS
Comptes Rendus. Mathématique

Équations différentielles
Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 341-364.

In this paper, we establish the existence of smooth center manifolds for a class of nonautonomous differential equations with non-instantaneous impulses under sufficiently small perturbations of the linear homogeneous part which has a nonuniform exponential trichotomy. In addition, we show the C 1 smoothness of center manifolds outside the jumping times.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.47
@article{CRMATH_2020__358_3_341_0,
     author = {Mengmeng Li and JinRong Wang and Donal O{\textquoteright}Regan and Michal Fe\v{c}kan},
     title = {Center {Manifolds} for {Non-instantaneous} {Impulsive} {Equations} {Under} {Nonuniform} {Hyperbolicity}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {341--364},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.47},
     language = {en},
}
Mengmeng Li; JinRong Wang; Donal O’Regan; Michal Fečkan. Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 341-364. doi : 10.5802/crmath.47. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.47/

[1] Drumi D. Bainov; Pavel S. Simeonov Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, 28, World Scientific, 1995

[2] Drumi D. Bainov; Pavel S. Simeonov Oscillation Theory of Impulsive Differential Equations, International Publications, 1998 | Zbl 0949.34002

[3] Luis Barreira; Claudia Valls Smoothness of invariant manifolds for nonautonomous equations, Commun. Math. Phys., Volume 259 (2005) no. 3, pp. 639-667 | Article | MR 2174420 | Zbl 1098.34041

[4] Luis Barreira; Claudia Valls Smooth center manifolds for nonuniformly partially hyperbolic trajectories, J. Differ. Equations, Volume 237 (2007) no. 2, pp. 307-342 | Article | MR 2330950 | Zbl 1114.34038

[5] Luis Barreira; Claudia Valls Center manifolds for impulsive equation under nonuniform hyperbolicity, Nonlinear Anal., Theory Methods Appl., Volume 74 (2011) no. 5, pp. 1616-1627 | Article | MR 2764363 | Zbl 1215.34049

[6] C. Chicone; Yuri Latushkin Center manifold for infinite dimensional nonautonomous differential equations, J. Differ. Equations, Volume 141 (1997) no. 2, pp. 356-399 | Article | MR 1488358 | Zbl 0992.34033

[7] Carmen Chicone Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, 2006 | MR 2224508 | Zbl 1120.34001

[8] Carmen Chicone; Yuri Latushkin Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, 70, American Mathematical Society, 1999 | MR 1707332 | Zbl 0970.47027

[9] Shui-Nee Chow; Weishi Liu; Yingfei Yi Center manifolds for invariant sets, J. Differ. Equations, Volume 168 (2000) no. 2, pp. 355-385 | Article | MR 1808454 | Zbl 0972.34033

[10] Shui-Nee Chow; Weishi Liu; Yingfei Yi Center manifolds for smooth invariant manifolds, Trans. Am. Math. Soc., Volume 352 (2000) no. 11, pp. 5179-5211 | Article | MR 1650077 | Zbl 0953.34038

[11] Mohamed S. El Bialy On sequences of C b k,δ maps which converge in the uniform C 0 -norm, Proc. Am. Math. Soc., Volume 128 (2000) no. 11, pp. 3285-3290 | Article | MR 1709749 | Zbl 0947.37016

[12] Michal Fečkan; JinRong Wang; Yong Zhou Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., Volume 1 (2014), pp. 93-101 | MR 3378311 | Zbl 1311.34094

[13] Julio López Fenner; Manuel Pinto On (h,k) manifolds with asymptotic phase, J. Math. Anal. Appl., Volume 216 (1997) no. 2, pp. 549-568 | Article | MR 1489597 | Zbl 0894.34040

[14] Julio López Fenner; Manuel Pinto On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., Theory Methods Appl., Volume 38 (1999) no. 3, pp. 307-325 | Article | MR 1705785 | Zbl 0931.34007

[15] Jack K. Hale Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, 1988 | MR 941371 | Zbl 0642.58013

[16] Dan Henry Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, 1981 | MR 610244 | Zbl 0456.35001

[17] Eduardo Hernández; Donal O’Regan On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., Volume 141 (2013) no. 5, pp. 1641-1649 | Article | MR 3020851 | Zbl 1266.34101

[18] Eduardo Hernández; Michelle Pierri; Donal O’Regan On abstract differential equations with non instantaneous impulses, Topol. Methods Nonlinear Anal., Volume 46 (2015) no. 2, pp. 1067-1088 | MR 3494983 | Zbl 1360.34131

[19] Hermen J. Hupkes; Sjoerd M. Verduyn Lunel Center manifold theory for functional differential equations of mixed type, J. Dyn. Differ. Equations, Volume 19 (2007) no. 2, pp. 497-560 | Article | MR 2333418 | Zbl 1132.34054

[20] Hermen J. Hupkes; Sjoerd M. Verduyn Lunel Center manifolds for periodic functional differential equations of mixed type, J. Differ. Equations, Volume 245 (2008) no. 6, pp. 1526-1565 | Article | MR 2436452 | Zbl 1157.34052

[21] Mengmeng Li; JinRong Wang; Donal O’Regan Stable manifolds for non-instantaneous impulsive nonautonomous differential equations, Electron, J. Qual. Theory Differ. Equ., Volume 2019 (2019), 82, 28 pages | MR 4028914 | Zbl 07174925

[22] Michelle Pierri; Donal O’Regan; Vanessa Rolnik Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 219 (2013) no. 12, pp. 6743-6749 | MR 3027840 | Zbl 1293.34019

[23] Anatoliĭ M. Samoĭlenko; Nikolai A. Perestyuk Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A, 14, World Scientific, 1995 | MR 1355787 | Zbl 0837.34003

[24] JinRong Wang Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., Volume 73 (2017), pp. 157-162 | Article | MR 3659922 | Zbl 1379.34056

[25] JinRong Wang; Michal Fečkan A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., Volume 46 (2015) no. 2, pp. 915-933 | MR 3494977 | Zbl 1381.34081

[26] JinRong Wang; Michal Fečkan; Ying Tian Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., Volume 14 (2017) no. 2, 46, 21 pages | MR 3619407 | Zbl 1373.34031

[27] JinRong Wang; Michal Fečkan; Yong Zhou Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., Volume 141 (2017) no. 7, pp. 727-746 | Article | MR 3710675 | Zbl 1387.34012

[28] JinRong Wang; Mengmeng Li; Donal O’Regan Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., Volume 84 (2019) no. 4, pp. 712-747 | Article | MR 3987832

[29] Dan Yang; JinRong Wang; Donal O’Regan On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 150-171 | Article | MR 3758718 | Zbl 1384.34023

[30] Tao Yang Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer, 2001 | MR 1850661 | Zbl 0996.93003