Comptes Rendus
Théorie des nombres
Harmonic number identities via polynomials with r-Lah coefficients
[Identités sur les nombres harmonique via des polynômes à coefficients r-Lah]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 535-550.

Dans cet article, des polynômes à coefficients faisant intervenir les nombres r-Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétrique-hyper-harmonique et nous étudions ses propriétés de base.

In this paper, polynomials whose coefficients involve r-Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.53
Classification : 11B75, 11B68, 47E05, 11B73, 11B83
Levent Kargın 1 ; Mümün Can 1

1 Department of Mathematics, Akdeniz University, Antalya, Turkey
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_5_535_0,
     author = {Levent Karg{\i}n and M\"um\"un Can},
     title = {Harmonic number identities via polynomials with {r-Lah} coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {535--550},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.53},
     language = {en},
}
TY  - JOUR
AU  - Levent Kargın
AU  - Mümün Can
TI  - Harmonic number identities via polynomials with r-Lah coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 535
EP  - 550
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.53
LA  - en
ID  - CRMATH_2020__358_5_535_0
ER  - 
%0 Journal Article
%A Levent Kargın
%A Mümün Can
%T Harmonic number identities via polynomials with r-Lah coefficients
%J Comptes Rendus. Mathématique
%D 2020
%P 535-550
%V 358
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmath.53
%G en
%F CRMATH_2020__358_5_535_0
Levent Kargın; Mümün Can. Harmonic number identities via polynomials with r-Lah coefficients. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 535-550. doi : 10.5802/crmath.53. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.53/

[1] Rachid Ait-Amrane; Hacène Belbachir Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., Volume 37 (2010), pp. 7-11 | MR | Zbl

[2] Rachid Ait-Amrane; Hacène Belbachir Are the hyperharmonics integral, A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 3-4, pp. 115-117 | DOI | MR | Zbl

[3] Hacène Belbachir; Amine Belkhir Cross recurrence relations for r-Lah numbers, Ars Comb., Volume 110 (2013), pp. 199-203 | MR | Zbl

[4] Arthur T. Benjamin; David Gaebler; Robert Gaebler A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9 | MR | Zbl

[5] Arthur T. Benjamin; Gregory O. Preston; Jennifer J. Quinn A Stirling encounter with harmonic numbers, Math. Mag., Volume 75 (2002) no. 2, pp. 95-103 | DOI | MR | Zbl

[6] David H. Borwein; Jonathan M. Bailey; Roland Girgensohn Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc., Volume 38 (1995) no. 2, pp. 277-294 | DOI | MR | Zbl

[7] Khristo N. Boyadzhiev A series transformation formula and related polynomials, Int. J. Math. Math. Sci., Volume 23 (2005), pp. 3849-3866 | DOI | MR | Zbl

[8] Khristo N. Boyadzhiev Harmonic number identities via Euler’s transform, J. Integer Seq., Volume 12 (2009) no. 6, 09.6.1, p. 8 | MR | Zbl

[9] Khristo N. Boyadzhiev Series transformation formulas of Euler type, Hadamard product of series, and harmonic number identities, Indian J. Pure Appl. Math., Volume 42 (2011) no. 5, pp. 371-386 | DOI | MR | Zbl

[10] Khristo N. Boyadzhiev Power series with skew-harmonic numbers, dilogarithms, and double integrals, Tatra Mt. Math. Publ., Volume 56 (2013), pp. 93-108 | MR | Zbl

[11] Khristo N. Boyadzhiev Binomial transform and the backward difference, Adv. Appl. Discrete Math., Volume 13 (2014) no. 1, pp. 43-63 | MR | Zbl

[12] Khristo N. Boyadzhiev Notes on the Binomial Transform. Theory and table with appendix on Stirling transform, World Scientific, 2018 | Zbl

[13] Khristo N. Boyadzhiev; Ayhan Dil Geometric polynomials: properties and applications to series with zeta values, Anal. Math., Volume 42 (2016) no. 3, pp. 203-224 | DOI | MR

[14] Andrei Z. Broder The r-Stirling numbers, Discrete Math., Volume 49 (1984), pp. 241-259 | DOI | Zbl

[15] Mümün Can; Muhammet Cihat Dağli Extended Bernoulli and Stirling matrices and related combinatorial identities, Linear Algebra Appl., Volume 444 (2014), pp. 114-131 | DOI | MR | Zbl

[16] José Luis Cereceda An introduction to hyperharmonic numbers (classroom note), Int. J. Math. Educ. Sci. Technol., Volume 46 (2015) no. 3, pp. 461-469 | DOI | MR | Zbl

[17] Junesang Choi Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl., Volume 1 (2013), 49 | MR | Zbl

[18] Wenchang Chu Summation formulae involving harmonic numbers, Filomat, Volume 26 (2012) no. 1, pp. 143-152 | MR | Zbl

[19] Wenchang Chu; De Donno Livia Hypergeometric series and harmonic number identities, Adv. Appl. Math., Volume 34 (2005) no. 1, pp. 123-137 | MR | Zbl

[20] John H. Conway; Richard K. Guy The book of numbers, Springer, 1996 | Zbl

[21] Ayhan Dil; Khristo N. Boyadzhiev Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498 | MR | Zbl

[22] Ayhan Dil; Veli Kurt Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2011) no. 2, pp. 212-229 | MR | Zbl

[23] Ayhan Dil; Veli Kurt Polynomials related to harmonic numbers and evaluation of harmonic number series I, Integers, Volume 12 (2012), a38, pp. 1-18 | MR | Zbl

[24] Ayhan Dil; István Mező A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008) no. 2, pp. 942-951 | MR | Zbl

[25] Ayhan Dil; István Mező; Mehmet Cenkci Evaluation of Euler-like sums via Hurwitz zeta values, Turk. J. Math., Volume 41 (2017) no. 6, pp. 1640-1655 | MR | Zbl

[26] Ayhan Dil; Erkan Muniroğlu Applications of derivative and difference operators on some sequences (2019) (https://arxiv.org/abs/1910.01876)

[27] Philippe Flajolet; Bruno Salvy Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35 | DOI | MR | Zbl

[28] Haydar Göral; Doğa Can Sertbaş Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 147 (2017), pp. 495-526 | DOI | MR | Zbl

[29] Som Prakash Goyal; R. K. Laddha On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, Volume 11 (1997) no. 2, pp. 99-108 | MR | Zbl

[30] Bai-Ni Guo; Feng Qi Some integral representations and properties of Lah numbers, J. Algebra Number Theory Acad., Volume 4 (2014) no. 3, pp. 77-87

[31] Ken Kamano Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech., Volume 56 (2011) no. 2, pp. 11-15 | MR

[32] Levent Kargin Some formulae for products of geometric polynomials with applications, J. Integer Seq., Volume 20 (2017) no. 4, Article 17.4.4. | MR | Zbl

[33] Levent Kargin; Bayram Çekim Higher order generalized geometric polynomials, Turk. J. Math., Volume 42 (2018) no. 3, pp. 887-903 | MR | Zbl

[34] Levent Kargin; Roberto B. Corcino Generalization of Mellin derivative and its applications, Integral Transforms Spec. Funct., Volume 27 (2016) no. 8, pp. 620-631 | DOI | MR | Zbl

[35] Bernd C. Kellner Identities between polynomials related to Stirling and harmonic numbers, Integers, Volume 14 (2014), A54 | MR | Zbl

[36] Peter M. Knopf The operator (xd dx) n and its application to series, Math. Mag., Volume 76 (2003) no. 5, pp. 364-371 | DOI

[37] István Mező About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 50 (2007), pp. 13-20 | MR | Zbl

[38] István Mező Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., Volume 4 (2009), 1 | MR | Zbl

[39] István Mező; Ayhan Dil Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., Volume 7 (2009) no. 2, pp. 310-321 | MR | Zbl

[40] István Mező; Ayhan Dil Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010) no. 2, pp. 360-369 | DOI | MR | Zbl

[41] Gábor Nyul; Gabriella Rácz The r-Lah numbers, Discrete Math., Volume 338 (2015) no. 10, pp. 1660-1666 | DOI | MR | Zbl

[42] Peter Paule; Carsten Schneider Computer proofs of a new family of harmonic number identities, Adv. Appl. Math., Volume 31 (2003) no. 2, pp. 359-378 | DOI | MR | Zbl

[43] Aleksandar Petojević A note about the Pochhammer symbol, Mathematica Moravica, Volume 12 (2008) no. 1, pp. 37-42 | DOI | MR | Zbl

[44] R. Sita Rama Chandra Rao; A. Siva Rama Sarma Some identities involving the Riemann zeta function, Indian J. Pure Appl. Math., Volume 10 (1979), pp. 602-607 | MR | Zbl

[45] József Sándor; Borislav Crstici Handbook of number theory. Vol II, Kluwer Academic Publishers, 2004 | Zbl

[46] Madjid Sebaoui; Diffalah Laissaoui; G. Guettai; Mourad Rahmani On s-Lah polynomials, Ars Comb., Volume 142 (2019), pp. 111-118 | MR | Zbl

[47] Jürgen Spieß Some identities involving harmonic numbers, Math. Comput., Volume 55 (1990) no. 132, pp. 839-863 | DOI | MR | Zbl

[48] Michael Z. Spivey Combinatorial sums and finite differences, Discrete Math., Volume 307 (2007) no. 24, pp. 3130-3146 | DOI | MR | Zbl

[49] Leopold Theisinger Bemerkung über die harmonische Reihe, Monatsh. Math. Phys., Volume 26 (1915), pp. 132-134 | DOI | Zbl

[50] Ce Xu Euler sums of generalized hyperharmonic numbers, J. Korean Math. Soc., Volume 55 (2018) no. 5, pp. 1207-1220 | MR | Zbl

[51] Qinglun Yan; Yaqing Liu Harmonic number identities involving telescoping method and derivative operator, Integral Transforms Spec. Funct., Volume 28 (2017) no. 10, pp. 703-709 | MR | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Hyperharmonic integers exist

Doğa Can Sertbaş

C. R. Math (2020)


Computation and theory of Euler sums of generalized hyperharmonic numbers

Ce Xu

C. R. Math (2018)


Are the hyperharmonics integral? A partial answer via the small intervals containing primes

Rachid Aït Amrane; Hacène Belbachir

C. R. Math (2011)