In this paper we provide a polynomial norm-controlled inversion of Baskakov–Gohberg–Sjöstrand Banach algebra in a Banach algebra , , which is not a symmetric Banach algebra.
Revised:
Accepted:
Published online:
Qiquan Fang 1; Chang Eon Shin 2
@article{CRMATH_2020__358_4_407_0, author = {Qiquan Fang and Chang Eon Shin}, title = {Norm-Controlled {Inversion} of {Banach} algebras of infinite matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {407--414}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.54}, language = {en}, }
Qiquan Fang; Chang Eon Shin. Norm-Controlled Inversion of Banach algebras of infinite matrices. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 407-414. doi : 10.5802/crmath.54. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.54/
[1] Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funkts. Anal. Prilozh., Volume 24 (1990) no. 3, pp. 64-65 translation in Funct. Anal. Appl. 24 (1990), no. 3, p. 222-224 | MR | Zbl
[2] Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis, Sib. Mat. Zh., Volume 38 (1997) no. 1, pp. 14-28 translation in Sib. Math. J. 38 (1997), no. 1, p. 10-22 | MR | Zbl
[3] On identifying the maximal ideals in Banach Algebras, J. Math. Anal. Appl., Volume 50 (1975), pp. 489-510 | DOI | MR | Zbl
[4] Wiener’s lemma: theme and variations, an introduction to spectral invariance and its applications, Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis (Applied and Numerical Harmonic Analysis), Birkhäuser, 2010 | DOI | Zbl
[5] Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices, Constr. Approx., Volume 32 (2010) no. 3, pp. 429-466 | DOI | MR | Zbl
[6] Norm-controlled inversion in smooth Banach algebras. I, J. Lond. Math. Soc., Volume 88 (2013) no. 1, pp. 49-64 | DOI | MR | Zbl
[7] Norm-controlled inversion in smooth Banach algebras. II, Math. Nachr., Volume 287 (2014) no. 8-9, pp. 917-937 | DOI | MR | Zbl
[8] Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 5, pp. 461-476 | DOI | Numdam | Zbl
[9] In search of the invisible spectrum, Ann. Inst. Fourier, Volume 49 (1999) no. 6, pp. 1925-1966 | DOI | Numdam | MR | Zbl
[10] Stability of localized integral operators on weighted spaces, Numer. Funct. Anal. Optim., Volume 33 (2012) no. 7-9, pp. 1166-1193 | MR | Zbl
[11] Norm-controlled inversion in weighted convolution algebras, J. Fourier Anal. Appl., Volume 25 (2019) no. 6, pp. 3018-3044 | DOI | MR | Zbl
[12] Differential subalgebras and norm-controlled inversion (2019) (submitted, https://arxiv.org/abs/1911.08679)
[13] Polynomial control on stability, J. Funct. Anal., Volume 276 (2019) no. 1, pp. 148-182 | DOI | Zbl
[14] Wiener type algebra of pseudodifferential operators, Sémin. Équ. Dériv. Partielles, Volume 1994-1995 (1995), 4, 19 pages | Zbl
[15] Wiener’s lemma for infinite matrices with polynomial off-diagonal decay, C. R. Math. Acad. Sci. Paris, Volume 340 (2005), pp. 567-570 | MR | Zbl
[16] Wiener’s lemma for infinite matrices, Trans. Am. Math. Soc., Volume 359 (2007) no. 7, pp. 3099-3123 | MR | Zbl
[17] Wiener’s lemma for localized integral operators, Appl. Comput. Harmon. Anal., Volume 25 (2008) no. 2, pp. 148-167 | MR | Zbl
[18] Wiener’s lemma for infinite matrices. II., Constr. Approx., Volume 34 (2011) no. 2, pp. 209-235 | MR | Zbl
[19] Tauberian theorem, Ann. Math., Volume 33 (1932), pp. 1-100 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy