We show that the lower-semicontinuous envelope of a non-convex double integral may not admit a representation as a double integral. By taking an integrand with value except at three points (say , and ) we give a simple proof and an explicit formula for the relaxation that hopefully may shed some light on this type of problems. This is a simplified version of examples by Mora-Corral and Tellini, and Kreisbeck and Zappale, who characterize the lower-semicontinuous envelope via Young measures.
Nous montrons que l’enveloppe semi-continue inférieure d’une intégrale double non convexe peut ne pas admettre de représentation sous forme d’intégrale double. En prenant un intégrande avec une valeur infinie sauf en trois points (disons -1, 0 et 1), nous donnons une preuve simple et une formule explicite pour la relaxation qui, espérons-le, pourra éclairer ce type de problèmes. Ceci est une version simplifiée des exemples de Mora-Corral et Tellini, et de Kreisbeck et Zappale, qui caractérisent l’enveloppe semi-continue inférieure via les mesures de Young.
Accepted:
Published online:
Andrea Braides 1
@article{CRMATH_2024__362_G5_487_0, author = {Andrea Braides}, title = {A simplified counterexample to the integral representation of the relaxation of double integrals}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--491}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.558}, language = {en}, }
TY - JOUR AU - Andrea Braides TI - A simplified counterexample to the integral representation of the relaxation of double integrals JO - Comptes Rendus. Mathématique PY - 2024 SP - 487 EP - 491 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.558 LA - en ID - CRMATH_2024__362_G5_487_0 ER -
Andrea Braides. A simplified counterexample to the integral representation of the relaxation of double integrals. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 487-491. doi : 10.5802/crmath.558. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.558/
[1] Lower semicontinuity and relaxation via Young measures for nonlocal variational problems and applications to peridynamics, SIAM J. Math. Anal., Volume 50 (2018), pp. 779-809 | DOI | MR | Zbl
[2] On the lower semicontinuity of certain integral functionals, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., Volume 74 (1983), pp. 274-282 | MR | Zbl
[3] Loss of double-integral character during relaxation, SIAM J. Math. Anal., Volume 53 (2021), pp. 351-385 | DOI | MR | Zbl
[4] Relaxation of a scalar nonlocal variational problem with a double-well potential, Calc. Var. Partial Differ. Equ., Volume 59 (2020), 67, 57, 30 pages | DOI | MR | Zbl
[5] Weak lower semicontinuity and relaxation for a class of non-local functionals, Rev. Mat. Complut., Volume 29 (2016), pp. 485-495 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy