In this paper, we determine the transversal instability of periodic traveling wave solutions of the generalized Zakharov–Kuznetsov equation in two space dimensions. Using an adaptation of the arguments in [F. Rousset et N. Tzvetkov, 2010] in the periodic context, it is possible to prove that all positive and one-dimensional periodic waves are spectrally (transversally) unstable. In addition, when periodic waves that change their sign exist, we also obtain the same property when the associated projection operator defined in the zero mean Sobolev space has only one negative eigenvalue.
Dans cet article, nous déterminons l’instabilité transversale des solutions périodiques de l’équation de Zakharov–Kuznetsov généralisée en deux dimensions spatiales. En utilisant l’adaptation des arguments de [F. Rousset et N. Tzvetkov, 2010] dans le contexte périodique, il est possible de prouver que toutes les ondes positives et unidimensionnelles L’ sont spectralement (transversalement) instables. En outre, lorsqu’il existe des ondes périodiques qui changent de signe, nous obtenons également la même propriété lorsque l’opérateur de projection associé défini dans l’espace de Sobolev à moyenne nulle n’a qu’une seule valeur propre négative.
Revised:
Accepted:
Published online:
Fábio Natali 1

@article{CRMATH_2024__362_G6_607_0, author = {F\'abio Natali}, title = {Transversal spectral instability of periodic traveling waves for the generalized {Zakharov{\textendash}Kuznetsov} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {607--617}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.574}, language = {en}, }
TY - JOUR AU - Fábio Natali TI - Transversal spectral instability of periodic traveling waves for the generalized Zakharov–Kuznetsov equation JO - Comptes Rendus. Mathématique PY - 2024 SP - 607 EP - 617 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.574 LA - en ID - CRMATH_2024__362_G6_607_0 ER -
Fábio Natali. Transversal spectral instability of periodic traveling waves for the generalized Zakharov–Kuznetsov equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 607-617. doi : 10.5802/crmath.574. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.574/
[1] Monotonicity of the period map for the equation , Monatsh. Math. (2024) no. 1, pp. 1-14 | DOI | MR | Zbl
[2] Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations, J. Differ. Equations, Volume 235 (2007), pp. 1-30 | DOI | MR | Zbl
[3] On the instability of periodic waves for dispersive equations, Differ. Integral Equ., Volume 29 (2016), pp. 837-874 | MR | Zbl
[4] Universal geometric condition for the transverse instability of solitary waves, Phys. Rev. Lett., Volume 84 (2000), pp. 2614-2617 | DOI
[5] Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, 2006 | MR | Zbl
[6] Stability theory for solitary-wave solutions of scalar field equation, Commun. Math. Phys., Volume 85 (1982), pp. 351-361 | DOI | MR | Zbl
[7] The transverse instability of periodic waves in Zakharov–Kuznetsov type equations, Stud. Appl. Math., Volume 124 (2010), pp. 323-345 | DOI | MR | Zbl
[8] Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences, 185, Springer, 2013 | DOI | MR | Zbl
[9] On the spectral stability of periodic traveling waves for the critical Korteweg-de Vries and Gardner equations, SN Partial Differ. Equ. Appl., Volume 2 (2021), 37 | DOI | MR | Zbl
[10] Maximum principles in differential equations, Springer, 1984 | MR | Zbl
[11] Eigenvalues, and instabilities of solitary waves, Philos. Trans. R. Soc. Lond., Ser. A, Volume 340 (1992), pp. 47-94 | DOI | MR | Zbl
[12] Transverse nonlinear instability for some Hamiltonian PDE’s, J. Math. Pures Appl., Volume 90 (2008), pp. 550-590 | DOI | Zbl
[13] A simple criterion of transverse linear instability for solitary waves, Math. Res. Lett., Volume 17 (2010), pp. 157-169 | DOI | MR | Zbl
[14] Transverse instability of the line solitary water-waves, Invent. Math., Volume 184 (2011), pp. 257-388 | DOI | MR | Zbl
[15] Transverse nonlinear instability for two dimensional dispersive models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2019) no. 2, pp. 477-496 | DOI | MR | Zbl
[16] Stability for line solitary waves of Zakharov–Kuznetsov equation, J. Differ. Equations, Volume 262 (2017), pp. 4336-4389 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy