We introduce a variant of the Erdős–Rényi random graph where the number of vertices is random and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz exploration is made of independent Poisson increments. Using a vanilla Poisson counting process, this enables us to give very short proofs of classical results such as the phase transition for the giant component or the connectedness for the standard Erdős–Rényi model.
On introduit une variante du graphe d’Erdős–Rényi où le nombre de sommets est aléatoire et suit une loi de Poisson. Une propriété de Markov du graphe montre que le chemin de Lukasiewicz a des incréments indépendants. Cela permet de retrouver des résultats classiques comme la transition de phase pour l’existence de la composante géante en utilisant simplement des propriétés standards des processus de comptage de Poisson.
Revised:
Accepted:
Published online:
Nicolas Curien 1

@article{CRMATH_2024__362_G6_649_0, author = {Nicolas Curien}, title = {Erd\H{o}s{\textendash}R\'enyi {Poissonized}}, journal = {Comptes Rendus. Math\'ematique}, pages = {649--656}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.578}, language = {en}, }
Nicolas Curien. Erdős–Rényi Poissonized. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 649-656. doi : 10.5802/crmath.578. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.578/
[1] Brownian excursions, critical random graphs and the multiplicative coalescent, Ann. Probab., Volume 25 (1997) no. 2, pp. 812-854 | DOI | MR | Zbl
[2] Asymptotic normality of the size of the giant component via a random walk, J. Comb. Theory, Ser. B, Volume 102 (2012), pp. 53-61 | DOI | MR | Zbl
[3] On random graphs. I, Publ. Math. Debr., Volume 6 (1959), pp. 290-297 | DOI | MR | Zbl
[4] On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., Ser. A, Volume 5 (1960), pp. 17-60 | Zbl
[5] On tree census and the giant component in sparse random graphs, Random Struct. Algorithms, Volume 1 (1990) no. 3, pp. 311-342 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy