Ball quotients, hyperelliptic varieties, and projective spaces are characterized by their Chern classes, as the varieties where the Miyaoka–Yau inequality becomes an equality. Ball quotients, Abelian varieties, and projective spaces are also characterized topologically: if a complex, projective manifold is homeomorphic to a variety of this type, then is itself of this type. In this paper, similar results are established for projective varieties with klt singularities that are homeomorphic to singular ball quotients, quotients of Abelian varieties, or projective spaces.
Les quotients de boules, les variétés hyperelliptiques et les espaces projectifs sont caractérisés par leurs classes de Chern, comme les variétés pour lesquelles l’inégalité de Miyaoka–Yau devient une égalité. Les quotients de boules, les variétés abéliennes et les espaces projectifs sont aussi caractérisés topologiquement : si une variété projective complexe est homéomorphe à une variété de ce type, alors est elle-même de ce type. Dans cet article, des résultats similaires sont établis pour les variétés projectives avec des singularités klt qui sont homéomorphes à des quotients de boules singulières, à des quotients de variétés abéliennes, ou à des espaces projectifs.
Accepted:
Published online:
Keywords: Miyaoka–Yau inequality, klt singularities, uniformisation, homeomorphisms
Mots-clés : Inégalité de Miyaoka–Yau, singularités klt, uniformisation, homéomorphismes
Daniel Greb 1; Stefan Kebekus 2; Thomas Peternell 3
@article{CRMATH_2024__362_S1_141_0, author = {Daniel Greb and Stefan Kebekus and Thomas Peternell}, title = {Miyaoka{\textendash}Yau inequalities and the topological characterization of certain klt varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--157}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.580}, language = {en}, }
TY - JOUR AU - Daniel Greb AU - Stefan Kebekus AU - Thomas Peternell TI - Miyaoka–Yau inequalities and the topological characterization of certain klt varieties JO - Comptes Rendus. Mathématique PY - 2024 SP - 141 EP - 157 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.580 LA - en ID - CRMATH_2024__362_S1_141_0 ER -
%0 Journal Article %A Daniel Greb %A Stefan Kebekus %A Thomas Peternell %T Miyaoka–Yau inequalities and the topological characterization of certain klt varieties %J Comptes Rendus. Mathématique %D 2024 %P 141-157 %V 362 %N S1 %I Académie des sciences, Paris %R 10.5802/crmath.580 %G en %F CRMATH_2024__362_S1_141_0
Daniel Greb; Stefan Kebekus; Thomas Peternell. Miyaoka–Yau inequalities and the topological characterization of certain klt varieties. Comptes Rendus. Mathématique, Complex algebraic geometry, in memory of Jean-Pierre Demailly, Volume 362 (2024) no. S1, pp. 141-157. doi : 10.5802/crmath.580. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.580/
[1] Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, 1996 | DOI | Zbl
[2] Aspherical Kähler manifolds with solvable fundamental group, Geom. Dedicata, Volume 122 (2006), pp. 215-229 | DOI | Zbl
[3] Homology theory for locally compact spaces, Mich. Math. J., Volume 7 (1960), pp. 137-159 | DOI | MR | Zbl
[4] Complex structures on Hermitian symmetric space, 2020 (MathOverflow, https://mathoverflow.net/q/363432)
[5] Algebraic methods in the global theory of complex spaces, Editura Academiei; John Wiley & Sons, 1976 (Translated from the Romanian)
[6] Deformation types of real and complex manifolds, Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000) (Nankai Tracts in Mathematics), Volume 5, World Scientific, 2002, pp. 195-238 | DOI | MR | Zbl
[7] Topological methods in moduli theory, Bull. Math. Sci., Volume 5 (2015) no. 3, pp. 287-449 | DOI | MR
[8] Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs (2023) (https://arxiv.org/abs/2305.04074)
[9] Seminormal complex spaces, Several Complex Variables VII (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 183-220 | DOI | MR | Zbl
[10] Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, 1996 | MR
[11] Minimal model program for projective morphisms between complex analytic spaces (2022) (https://arxiv.org/abs/2201.11315)
[12] Vanishing theorems for projective morphisms between complex analytic spaces (2023) (https://arxiv.org/abs/2205.14801)
[13] On polarized manifolds whose adjoint bundles are not semipositive, Algebraic Geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1985, pp. 167-178 | DOI | Zbl
[14] On singular del Pezzo varieties, Algebraic Geometry (L’Aquila, 1988) (Lecture Notes in Mathematics), Volume 1417, Springer, 1988, pp. 117-128 | DOI | Zbl
[15] Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1998 | DOI
[16] Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 114 (2011) no. 1, pp. 87-169 (An extended version with additional graphics is available at http://arxiv.org/abs/1003.2913) | DOI | Numdam | MR | Zbl
[17] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2004) no. 10, pp. 1965-2004 | DOI | Zbl
[18] Projectively flat klt varieties, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1005-1036 | DOI | Numdam | MR | Zbl
[19] Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebr. Geom., Volume 31 (2022), pp. 467-496 | DOI | MR | Zbl
[20] The Miyaoka–Yau inequality and uniformisation of canonical models, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 6, pp. 1487-1535 | DOI | MR | Zbl
[21] Harmonic metrics on Higgs sheaves and uniformization of varieties of general type, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1061-1094 | DOI | MR | Zbl
[22] Uniformisation of higher-dimensional varieties, Algebraic Geometry (Salt Lake City 2015) (Proceedings of Symposia in Pure Mathematics), Volume 1, American Mathematical Society, 2015, pp. 277-308 | DOI | Zbl
[23] Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 14, Springer, 1988 | DOI
[24] L’invariance topologique des classes de Pontrjagin rationnelles (d’après S. P. Novikov et L. C. Siebenmann), Séminaire Bourbaki, Vol. 9, Société Mathématique de France, 1995, pp. 391-406 (Exp. No. 304) | MR
[25] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI
[26] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 1978 | DOI
[27] On the complex projective spaces, J. Math. Pures Appl., Volume 36 (1957), pp. 201-216 | MR | Zbl
[28] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI
[29] Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995 | DOI
[30] Rationally connected foliations after Bogomolov and McQuillan, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 65-81 | DOI | MR | Zbl
[31] Kawamata–Miyaoka type inequality for canonical -Fano varieties (2023) (https://arxiv.org/abs/2308.10440)
[32] A characterization of finite quotients of abelian varieties, Int. Math. Res. Not., Volume 2018 (2018) no. 1, pp. 292-319 | DOI | MR | Zbl
[33] Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, University of Tokyo Press, 1973 | DOI
[34] Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR, Volume 163 (1965), pp. 298-300 | MR
[35] On generic nefness of tangent sheaves, Math. Z., Volume 304 (2023) no. 4, 58, 23 pages | DOI | MR | Zbl
[36] Projective morphisms according to Kawamata (1983) (Preprint, University of Warwick, available at http://www.maths.warwick.ac.uk/~miles/3folds)
[37] On the construction and topological invariance of the Pontryagin classes, Geom. Dedicata, Volume 148 (2010), pp. 309-343 | DOI | MR | Zbl
[38] Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Volume 144 (1961), pp. 345-360 | DOI | Zbl
[39] The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. Math., Volume 112 (1980) no. 1, pp. 73-111 | DOI | Zbl
[40] Strong rigidity of compact quotients of exceptional bounded symmetric domains, Duke Math. J., Volume 48 (1981) no. 4, pp. 857-871 | DOI | MR | Zbl
[41] Analytische Zerlegungen komplexer Räume, Math. Ann., Volume 132 (1956), pp. 63-93 | DOI | MR | Zbl
[42] Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Éc. Norm. Supér., Volume 69 (1952), pp. 109-182 | DOI | Numdam | Zbl
[43] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | Zbl
[44] Rational connectedness of log -Fano varieties, J. Reine Angew. Math., Volume 590 (2006), pp. 131-142 | DOI | MR | Zbl
[45] Introduction to Complex Analytic Geometry, Birkhäuser, 1991 (Translated from the Polish by Maciej Klimek) | DOI
Cited by Sources:
Comments - Policy