[On certain invariants of commutative artinian algebras]
We study properties of algebraic, topological and analytic invariants of commutative artinian algebras and relationships between them. For example, we show that the length of the module of Kähler differentials of any local artinian Gorenstein algebra over is greater than or equal to the length of the algebra itself minus one. We then prove, employing the canonical duality in the cotangent complex, that if the corresponding thick point is smoothable, then its Tjurina and Milnor numbers satisfy the inequality .
Dans cette note, on étudie les propriétés des invariants algébriques, topologiques et analytiques des algèbres artiniennes commutatives et les relations remarquables entre eux. Par exemple, on montre que la longueur du module des différentielles de Kähler de toute algèbre artinienne locale de Gorenstein sur est supérieure ou égale à la longueur de l’algèbre lui-mème moins un. On obtient alors, grâce à la dualité canonique dans le complexe cotangent, que si le point épais correspondant est lissifiable, on a l’inégalité pour ses nombres de Tjurina et de Milnor.
Revised:
Accepted:
Published online:
Alexandre Aleksandrov 1

@article{CRMATH_2024__362_G7_751_0, author = {Alexandre Aleksandrov}, title = {Sur certains invariants des alg\`ebres artiniennes commutatives}, journal = {Comptes Rendus. Math\'ematique}, pages = {751--759}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.589}, language = {fr}, }
Alexandre Aleksandrov. Sur certains invariants des algèbres artiniennes commutatives. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 751-759. doi : 10.5802/crmath.589. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.589/
[1] Deformations of bouquets of quasihomogeneous one-dimensional singularities, Funct. Anal. Appl., Volume 15 (1981), pp. 53-55 | DOI | Zbl
[2] Duality and deformations of artinian algebras, Proceedings of the International Conference on the Theory of Rings, Algebras and Modules in Memory of A. I. Shirshov, Barnaul, USSR (1991), p. 134
[3] Duality, derivations and deformations of zero-dimensional singularities, Zero-dimensional schemes. Proceedings of the International Conference held in Ravello, Italy, June 8-13, 1992, Walter de Gruyter (1994), pp. 11-31 | MR | Zbl
[4] Introduction to commutative algebra, Addison-Wesley Publishing Group, 1969 | MR | Zbl
[5] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1996 | Zbl
[6] Éléments de mathématique. Algèbre. Chapitres 1 à 3, Masson, 1970 | MR | Zbl
[7] On the length of faithful modules over artinian local rings, Math. Scand., Volume 31 (1972), pp. 78-82 | DOI | MR | Zbl
[8] Der kanonische Module eines Cohen–Macaulay Rings, Lecture Notes in Mathematics, 238, Springer, 1971 | DOI
[9] Associated graded algebra of a Gorenstein Artin algebra, Memoirs of the American Mathematical Society, 514, American Mathematical Society, 1994 | DOI | Zbl
[10] Almost complete intersections are not Gorenstein rings, J. Algebra, Volume 28 (1974), pp. 111-115 | DOI | MR | Zbl
[11] Kähler Differentials, Advanced Lectures in Mathematics, Springer, 1986 | DOI | MR
[12] Milnor number and Tjurina number of a complete intersection, Math. Ann., Volume 271 (1985), pp. 121-124 | DOI | MR | Zbl
[13] Cohomology of analytical algebras, Tr. Mosk. Mat. O-va, Volume 44 (1982), pp. 3-61 | MR | Zbl
[14] Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math., Volume 278/279 (1975), pp. 174-190 | MR | Zbl
[15] Über Derivationen von lokalen analytischen Algebren, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972), Volume 1973, Academic Press Inc., 1973, pp. 161-192 | MR | Zbl
[16] Rings which are a factor of a Gorenstein ring by its socle, Invent. Math., Volume 23 (1974), pp. 153-162 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy