In this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimensions.
Dans cette courte note, nous fournissons une extension partielle de la loi de conservation obtenue par Rivière’s en dimensions supérieures, sous certaines conditions d’intégrabilité de Lorentz pour la matrice de connexion. Comme application, nous obtenons une loi de conservation pour les applications faiblement harmoniques autour de points réguliers en dimensions supercritiques.
Accepted:
Published online:
Chang-Yu Guo 1; Chang-Lin Xiang 2
@article{CRMATH_2024__362_G7_769_0, author = {Chang-Yu Guo and Chang-Lin Xiang}, title = {Conservation law of harmonic mappings in supercritical dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--773}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.592}, language = {en}, }
Chang-Yu Guo; Chang-Lin Xiang. Conservation law of harmonic mappings in supercritical dimensions. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 769-773. doi : 10.5802/crmath.592. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/
[1] Sobolev spaces, Pure and Applied Mathematics, 140, Academic Press Inc., 2003 | Zbl
[2] The weak solutions to the evolution problems of harmonic maps, Math. Z., Volume 201 (1989) no. 1, pp. 69-74 | DOI | Zbl
[3] The conservation law approach in geometric PDEs, Surveys in Geometric Analysis, Volume 2022, Science Press, Beijing, 2023, pp. 51-63
[4] Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics, 150, Cambridge University Press, 2002 | DOI | Zbl
[5] Convolution operators and spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | DOI | Zbl
[6] Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007), pp. 1-22 | DOI | Zbl
[7] Partial regularity for harmonic maps and related problems, Commun. Pure Appl. Math., Volume 61 (2008), pp. 451-463 | DOI | Zbl
[8] Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math., Volume 49 (1989), pp. 1722-1733 | DOI | Zbl
[9] Weak solutions and developments of singularities of the SU(2) -model, Commun. Pure Appl. Math., Volume 41 (1988), pp. 459-469 | DOI | Zbl
[10] Connections with bounds on curvature, Commun. Math. Phys., Volume 83 (1982), pp. 31-42 | DOI | Zbl
Cited by Sources:
Comments - Policy