Families of jets through singularities of algebraic varieties are here studied in relation to the families of arcs originally studied by Nash. After proving a general result relating them, we look at normal locally complete intersection varieties with rational singularities and focus on a class of singularities we call higher Du Val singularities, a higher dimensional (and codimensional) version of Du Val singularities that is closely related to Arnold singularities. More generally, we introduce the notion of higher compound Du Val singularities, whose definition parallels that of compound Du Val singularities. For such singularities, we prove that there exists a one-to-one correspondence between families of arcs and families of jets of sufficiently high order through the singularities. In dimension two, the result partially recovers a theorem of Mourtada on the jet schemes of Du Val singularities. As an application, we give a solution of the Nash problem for higher Du Val singularities.
Les familles de jets à travers les singularités des variétés algébriques sont étudiées ici en relation avec les familles d’arcs initialement étudiées par Nash. Après avoir démontré un résultat général les concernant, nous examinons les variétés d’intersection localement complètes normales avec des singularités rationnelles et nous concentrons sur une classe de singularités que nous appelons « singularités de Du Val supérieures » , une version de dimension (et codimension) supérieure des singularités de Du Val étroitement liée aux singularités d’Arnold. Plus généralement, nous introduisons la notion de « singularités de Du Val composées supérieures » , dont la définition est parallèle à celle des singularités de Du Val composées. Pour de telles singularités, nous démontrons qu’il existe une correspondance bijective entre les familles d’arcs et les familles de jets d’ordre suffisamment élevé à travers les singularités. En dimension deux, le résultat récupère partiellement un théorème de Mourtada sur les schémas de jets des singularités de Du Val. En tant qu’application, nous proposons une solution au problème de Nash pour les singularités de Du Val supérieures.
Accepted:
Published online:
Keywords: Jet scheme, arc space, Nash problem, rational singularity
Mot clés : Schémas de jet, espace d’arc, problème de Nash, singularité rationnelle
Tommaso de Fernex 1; Shih-Hsin Wang 1
@article{CRMATH_2024__362_S1_119_0, author = {Tommaso de Fernex and Shih-Hsin Wang}, title = {Families of jets of arc type and higher (co)dimensional {Du} {Val} singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--139}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.614}, language = {en}, }
TY - JOUR AU - Tommaso de Fernex AU - Shih-Hsin Wang TI - Families of jets of arc type and higher (co)dimensional Du Val singularities JO - Comptes Rendus. Mathématique PY - 2024 SP - 119 EP - 139 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.614 LA - en ID - CRMATH_2024__362_S1_119_0 ER -
Tommaso de Fernex; Shih-Hsin Wang. Families of jets of arc type and higher (co)dimensional Du Val singularities. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 119-139. doi : 10.5802/crmath.614. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.614/
[1] Normal forms of functions near degenerate critical points, the Weyl groups and Lagrangian singularities, Funkts. Anal. Prilozh., Volume 6 (1972) no. 4, pp. 3-25 | MR | Zbl
[2] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[3] On the embedded Nash problem (2022) | arXiv
[4] On rational singularities in dimensions , Math. Ann., Volume 211 (1974), pp. 237-244 | DOI | MR | Zbl
[5] Jet schemes of quasi-ordinary surface singularities, Nagoya Math. J., Volume 242 (2021), pp. 77-164 | DOI | MR | Zbl
[6] Embedding codimension of the space of arcs, Forum Math. Pi, Volume 10 (2022), e4, 37 pages | DOI | MR | Zbl
[7] Contact loci in arc spaces, Compos. Math., Volume 140 (2004) no. 5, pp. 1229-1244 | DOI | MR | Zbl
[8] Inversion of adjunction for local complete intersection varieties, Am. J. Math., Volume 126 (2004) no. 6, pp. 1355-1365 | MR | Zbl
[9] Jet schemes and singularities, Algebraic Geometry (Seattle, 2005). Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 505-546 | DOI | MR | Zbl
[10] The Nash problem for surfaces, Ann. Math., Volume 176 (2012) no. 3, pp. 2003-2029 | DOI | MR | Zbl
[11] On the generalized Nash problem for smooth germs and adjacencies of curve singularities, Adv. Math., Volume 320 (2017), pp. 1269-1317 | DOI | MR | Zbl
[12] Rational points in Henselian discrete valuation rings, Publ. Math., Inst. Hautes Étud. Sci. (1966) no. 31, pp. 59-64 | DOI | Numdam | MR
[13] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I., Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 11, pp. 1-167 | MR
[14] Multiplier ideals of monomial ideals, Trans. Am. Math. Soc., Volume 353 (2001) no. 7, pp. 2665-2671 | DOI | MR | Zbl
[15] The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620 | DOI | MR | Zbl
[16] Maximal divisorial sets in arc spaces, Algebraic Geometry in East Asia (Hanoi, 2005) (Advanced Studies in Pure Mathematics), Volume 50, Mathematical Society of Japan, 2008, pp. 237-249 | DOI | MR | Zbl
[17] Arc spaces of -type singularities, J. Singul., Volume 7 (2013), pp. 238-252 | DOI | MR | Zbl
[18] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973, xviii+446 pages | MR
[19] Singularities of pairs, Algebraic Geometry (Santa Cruz, 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl
[20] On the configuration of the singular fibers of jet schemes of rational double points, Commun. Algebra, Volume 50 (2022) no. 4, pp. 1802-1820 | DOI | MR | Zbl
[21] Inequalities related to certain couples of local rings, Acta Math., Volume 112 (1964), pp. 69-89 | DOI | MR | Zbl
[22] Jet schemes and minimal embedded desingularization of plane branches, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 107 (2013) no. 1, pp. 145-157 | DOI | MR | Zbl
[23] Motivic measures, Séminaire Bourbaki, Vol. 1999/2000 (Astérisque), Volume 276, Société Mathématique de France, 2002, pp. 267-297 | Numdam | MR | Zbl
[24] Minimal discrepancy for a terminal cDV singularity is , J. Math. Sci., Tokyo, Volume 3 (1996) no. 2, pp. 445-456 | MR | Zbl
[25] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR
[26] Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2313-2336 | DOI | Numdam | MR | Zbl
[27] Jet schemes of toric surfaces, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 9-10, pp. 563-566 | DOI | Numdam | MR | Zbl
[28] Jet schemes of rational double point singularities, Valuation Theory in Interaction (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 373-388 | DOI | MR | Zbl
[29] Jet schemes of normal toric surfaces, Bull. Soc. Math. Fr., Volume 145 (2017) no. 2, pp. 237-266 | DOI | MR | Zbl
[30] Jet schemes and minimal toric embedded resolutions of rational double point singularities, Commun. Algebra, Volume 46 (2018) no. 3, pp. 1314-1332 | DOI | MR | Zbl
[31] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (with an appendix by David Eisenbud and Edward Frenkel) | DOI | MR | Zbl
[32] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 (a celebration of John F. Nash, Jr.) | DOI | MR | Zbl
[33] Nash problem for quotient surface singularities, J. Lond. Math. Soc., Volume 87 (2013) no. 1, pp. 177-203 | DOI | MR | Zbl
[34] Arcs and wedges on rational surface singularities, J. Algebra, Volume 366 (2012), pp. 126-164 | DOI | MR | Zbl
[35] Minimal models of canonical -folds, Algebraic Warieties and Analytic Varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 131-180 | DOI | MR | Zbl
[36] The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff, 1977, pp. 565-678 | MR | Zbl
[37] Jets via Hasse–Schmidt derivations, Diophantine Geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 4, Edizioni della Normale, 2007, pp. 335-361 | MR | Zbl
[38] Three-dimensional counter-examples to the Nash problem, Compos. Math., Volume 149 (2013) no. 9, pp. 1519-1534 | DOI | MR | Zbl
[39] The space of arcs of an algebraic variety, Algebraic Geometry (Salt Lake City, 2015) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018 no. 1, pp. 169-197 | DOI | MR | Zbl
[40] Jacobian discrepancies and rational singularities, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 165-199 | DOI | MR | Zbl
[41] Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl
[42] Divisorial valuations via arcs, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 425-448 | DOI | MR | Zbl
[43] Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003) no. 2-3, pp. 219-236 | DOI | MR | Zbl
[44] Stacks Project (https://stacks.math.columbia.edu/)
Cited by Sources:
Comments - Policy