We study two models of random multiplicative functions: Rademacher random multiplicative functions supported on the squarefree integers , and Rademacher random completely multiplicative functions . We prove that the partial sums and change sign infinitely often as , almost surely. The case is left as an open question and we stress the possibility of only a finite number of sign changes, with positive probability.
Nous étudions deux modèles de fonctions multiplicatives aléatoires : les fonctions multiplicatives aléatoires de Rademacher supportées sur les entiers sans carrés , et les fonctions multiplicatives aléatoires complètement multiplicatives de Rademacher . Nous prouvons que les sommes partielles et changent de signe infiniment souvent comme , presque sûrement. Le cas reste une question ouverte et nous soulignons la possibilité de seulement un nombre fini de changements de signe, avec probabilité positive.
Accepted:
Published online:
Keywords: Random multiplicative functions, Oscillation theorems
Mots-clés : Fonctions multiplicatives aléatoires, théorèmes d’oscillation
Marco Aymone 1

@article{CRMATH_2024__362_G8_895_0, author = {Marco Aymone}, title = {Sign changes of the partial sums of a random multiplicative function {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {895--901}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.615}, language = {en}, }
Marco Aymone. Sign changes of the partial sums of a random multiplicative function II. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 895-901. doi : 10.5802/crmath.615. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.615/
[1] Partial sums of random multiplicative functions and extreme values of a model for the Riemann zeta function, J. Lond. Math. Soc., Volume 103 (2021) no. 4, pp. 1618-1642 | DOI | MR | Zbl
[2] Sign changes of the partial sums of a random multiplicative function, Bull. Lond. Math. Soc., Volume 55 (2023) no. 1, pp. 78-89 | DOI | MR | Zbl
[3] Partial sums of biased random multiplicative functions, J. Number Theory, Volume 172 (2017), pp. 343-382 | DOI | MR | Zbl
[4] On a Turán conjecture and random multiplicative functions, Q. J. Math., Volume 74 (2023) no. 2, pp. 767-777 Online first (2022) | DOI | MR | Zbl
[5] Sommes friables de fonctions multiplicatives aléatoires, Acta Arith., Volume 152 (2012) no. 3, pp. 243-266 | DOI | MR | Zbl
[6] Moments of polynomials with random multiplicative coefficients, Mathematika, Volume 68 (2022) no. 1, pp. 191-216 | DOI | MR | Zbl
[7] Helson’s problem for sums of a random multiplicative function, Mathematika, Volume 62 (2016) no. 1, pp. 101-110 | DOI | MR | Zbl
[8] Almost sure upper bound for random multiplicative functions (2023) (https://arxiv.org/abs/2304.00943)
[9] Random multiplicative functions in short intervals, Int. Math. Res. Not., Volume 2012 (2012) no. 3, pp. 479-492 | DOI | MR | Zbl
[10] Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 6 (1961), pp. 221-254 | MR | Zbl
[11] On random multiplicative functions, Hubert Delange colloquium (Orsay, 1982) (Publications Mathématiques d’Orsay), Volume 83, Univ. Paris XI, Orsay, 1983, pp. 74-96 | MR | Zbl
[12] Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function, Ann. Appl. Probab., Volume 23 (2013) no. 2, pp. 584-616 | DOI | MR | Zbl
[13] On the limit distributions of some sums of a random multiplicative function, J. Reine Angew. Math., Volume 678 (2013), pp. 95-124 | DOI | MR | Zbl
[14] Moments of random multiplicative functions, II: High moments, Algebra Number Theory, Volume 13 (2019) no. 10, pp. 2277-2321 | DOI | MR | Zbl
[15] Moments of random multiplicative functions, I: Low moments, better than squareroot cancellation, and critical multiplicative chaos, Forum Math. Pi, Volume 8 (2020), e1, 95 pages | DOI | MR | Zbl
[16] Almost sure large fluctuations of random multiplicative functions, Int. Math. Res. Not., Volume 2023 (2023) no. 3, pp. 2095-2138 | DOI | MR | Zbl
[17] Almost sure bounds for a weighted Steinhaus random multiplicative function (2023) (https://arxiv.org/abs/2307.00499)
[18] A disproof of a conjecture of Pólya, Mathematika, Volume 5 (1958), pp. 141-145 | DOI | MR | Zbl
[19] Moments of random multiplicative functions and truncated characteristic polynomials, Q. J. Math., Volume 67 (2016) no. 4, pp. 683-714 | DOI | MR | Zbl
[20] A note on Helson’s conjecture on moments of random multiplicative functions, Analytic number theory, Springer, 2015, pp. 145-169 | DOI | MR | Zbl
[21] Summation of a random multiplicative function on numbers having few prime factors, Math. Proc. Camb. Philos. Soc., Volume 150 (2011) no. 2, pp. 193-214 | DOI | MR | Zbl
[22] The distribution of weighted sums of the Liouville function and Pólya’s conjecture, J. Number Theory, Volume 133 (2013) no. 2, pp. 545-582 | DOI | MR | Zbl
[23] Quadratic characters with positive partial sums, Mathematika, Volume 69 (2023) no. 1, pp. 90-99 | DOI | MR | Zbl
[24] How negative can be? (2022) (https://arxiv.org/abs/2211.05540)
[25] On the random Chowla conjecture, Geom. Funct. Anal., Volume 33 (2023) no. 3, pp. 749-777 | DOI | MR | Zbl
[26] Sur les séries dont les termes sont des variables eventuelles independantes, Stud. Math., Volume 3 (1931), pp. 119-155 | DOI | Zbl
[27] On mean values of random multiplicative functions, Proc. Am. Math. Soc., Volume 141 (2013) no. 2, pp. 409-420 | DOI | MR | Zbl
[28] Between the problems of Pólya and Turán, J. Aust. Math. Soc., Volume 93 (2012) no. 1-2, pp. 157-171 | DOI | MR | Zbl
[29] On consecutive values of random completely multiplicative functions, Electron. J. Probab., Volume 25 (2020), 59, 28 pages | DOI | MR | Zbl
[30] Central limit theorems for random multiplicative functions (2022) (https://arxiv.org/abs/2212.06098)
[31] Random factorizations and Riemann’s hypothesis, Duke Math. J., Volume 11 (1944), pp. 267-275 | DOI | MR | Zbl
[32] Better than square-root cancellation for random multiplicative functions, Trans. Amer. Math. Soc., Ser. B, Volume 11 (2024), pp. 482-507 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy