In this paper, we count the number of matrices where , , and is a given orbit of . By an elementary argument, we show that the above number is exactly . This formula gives an equidistribution result over , which is an analogue, in strong form, of a result over proved in [2] and [3].
Dans cet article, nous comptons le nombre de matrices où , et est une orbite donnée de . Par un argument élémentaire, nous montrons que le nombre ci-dessus est exactement . Cette formule donne un résultat d’équidistribution sur , qui est un analogue, sous forme forte, d’un résultat sur prouvé dans [2] et [3].
Revised:
Accepted:
Published online:
Keywords: Counting formula, Finite field, Polynomial ring
Mots-clés : Formule de comptage, Corps fini, Anneau polynomial
Yibo Ji 1

@article{CRMATH_2024__362_G8_883_0, author = {Yibo Ji}, title = {Distribution of matrices over $\mathbb{F}_q[x]$}, journal = {Comptes Rendus. Math\'ematique}, pages = {883--893}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.616}, language = {en}, }
Yibo Ji. Distribution of matrices over $\mathbb{F}_q[x]$. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 883-893. doi : 10.5802/crmath.616. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.616/
[1] Partial resolutions of nilpotent varieties, Astérisque, 101–102, Société Mathématique de France, 1983, pp. 23-74 | Numdam | MR | Zbl
[2] Density of integer points on affine homogeneous varieties, Duke Math. J., Volume 71 (1993) no. 1, pp. 143-179 | DOI | MR | Zbl
[3] Mixing, counting, and equidistribution in Lie groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | DOI | MR | Zbl
[4] Unipotent flows and counting lattice points on homogeneous varieties, Ann. Math., Volume 143 (1996) no. 2, pp. 253-299 | DOI | MR | Zbl
[5] Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 48-80 | DOI | MR | Zbl
[6] Mixed Hodge polynomials of character varieties. With an appendix by Nicholas M. Katz., Invent. Math., Volume 174 (2008) no. 3, pp. 555-624 | DOI | MR | Zbl
[7] Rational points in flag varieties over function fields, J. Number Theory, Volume 95 (2002) no. 2, pp. 142-149 | DOI | MR | Zbl
[8] Number of points of the nilpotent cone over a finite field and its cohomology (https://mathoverflow.net/questions/301206/number-of-points-of-the-nilpotent-cone-over-a-finite-field-and-its-cohomology)
[9] Counting subspaces of given height defined over a function field, J. Number Theory, Volume 128 (2008) no. 12, pp. 2973-3004 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy