Let $\mathcal{H}^{\infty }$ be the Banach space of bounded analytic functions in the unit disk $\mathbb{D}=\bigl \lbrace z\in \mathbb{C} : \vert z \vert <1\bigr \rbrace $ endowed with the norm $\Vert f \Vert _{\infty }=\sup _{z\in \mathbb{D}} \left|f(z) \right|$. The Bohr radius $R$ for $\mathcal{H}^{\infty }$ is defined by
| \[ R=\sup _{0<r<1}\Biggl \lbrace r : \sum _{n=0}^{\infty } \left|a_n(f) \right|r^n\le \Vert f \Vert _{\infty } \ \text{for all $f(z)=\sum _{n=0}^{\infty }a_nz^n\in \mathcal{H}^{\infty }$}\Biggr \rbrace \] |
and it is well-known that $R=1/3$, the Bohr radius, is best possible. The class $\mathcal{P}_n$ of complex polynomials of degree at most $n$ which are bounded by $1$ and the Bohr radius for this class is defined by
| \[ R_n \mathrel {:=} \sup _{0<r<1}\Biggl \lbrace r : \sum _{n=0}^{n} \left|a_n(p) \right|r^n\le \Vert p \Vert _{\infty } \ \text{for all $p(z)=\sum _{n=0}^{n}a_nz^n\in \mathcal{P}_n$}\Biggr \rbrace \] |
and the estimate
| \[ \frac{c_1}{3^{n/2}}<R_n-\frac{1}{3}<c_2\frac{\log n}{n} \] |
is valid for large values of $n$ for absolute positive constants $c_1$ and $c_2$. In this paper, we prove the above estimate for simply connected domains.
Soit $\mathcal{H}^{\infty }$ l’espace de Banach des fonctions analytiques bornées dans le disque unité $\mathbb{D}=\bigl \lbrace z\in \mathbb{C} : \vert z \vert <1\bigr \rbrace $, muni de la norme $\Vert f \Vert _{\infty }=\sup _{z\in \mathbb{D}} \left|f(z) \right|$. Le rayon de Bohr $R$ pour $\mathcal{H}^{\infty }$ est défini par
| \[ R=\sup _{0<r<1}\Biggl \lbrace r : \sum _{n=0}^{\infty } \left|a_n(f) \right|r^n\le \Vert f \Vert _{\infty } \ \text{pour tout $f(z)=\sum _{n=0}^{\infty }a_nz^n\in \mathcal{H}^{\infty }$}\Biggr \rbrace \] |
et il est bien connu que $R=1/3$, le rayon de Bohr, est optimal. La classe $\mathcal{P}_n$ des polynômes complexes de degré au plus $n$, qui sont bornés par $1$, et le rayon de Bohr pour cette classe sont définis par
| \[ R_n \mathrel {:=} \sup _{0<r<1}\Biggl \lbrace r : \sum _{n=0}^{n} \left|a_n(p) \right|r^n\le \Vert p \Vert _{\infty } \ \text{pour tout $p(z)=\sum _{n=0}^{n}a_nz^n\in \mathcal{P}_n$}\Biggr \rbrace \] |
et l’estimation
| \[ \frac{c_1}{3^{n/2}}<R_n-\frac{1}{3}<c_2\frac{\log n}{n} \] |
est valable pour de grandes valeurs de $n$, pour des constantes absolues positives $c_1$ et $c_2$. Dans cet article, nous démontrons cette estimation pour les domaines simplement connexes.
Revised:
Accepted:
Published online:
Keywords: Bohr inequality, Bohr radius, Bohr phenomenon, analytic functions, majorant series, Dirichlet series, harmonic mappings, holomorphic functions, Reinhardt domains, multidimensional Bohr radius
Mots-clés : Inégalité de Bohr, rayon de Bohr, phénomène de Bohr, fonctions analytiques, série majorante, séries de Dirichlet, applications harmoniques, fonctions holomorphes, domaines de Reinhardt, rayon de Bohr multidimensionnel
Molla Basir Ahamed 1; Vasudevarao Allu 2; Himadri Halder 2
CC-BY 4.0
@article{CRMATH_2025__363_G11_1047_0,
author = {Molla Basir Ahamed and Vasudevarao Allu and Himadri Halder},
title = {Asymptotic behaviour of {Bohr{\textquoteright}s} radii for polynomials on simply connected domains},
journal = {Comptes Rendus. Math\'ematique},
pages = {1047--1058},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.625},
language = {en},
}
TY - JOUR AU - Molla Basir Ahamed AU - Vasudevarao Allu AU - Himadri Halder TI - Asymptotic behaviour of Bohr’s radii for polynomials on simply connected domains JO - Comptes Rendus. Mathématique PY - 2025 SP - 1047 EP - 1058 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.625 LA - en ID - CRMATH_2025__363_G11_1047_0 ER -
%0 Journal Article %A Molla Basir Ahamed %A Vasudevarao Allu %A Himadri Halder %T Asymptotic behaviour of Bohr’s radii for polynomials on simply connected domains %J Comptes Rendus. Mathématique %D 2025 %P 1047-1058 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.625 %G en %F CRMATH_2025__363_G11_1047_0
Molla Basir Ahamed; Vasudevarao Allu; Himadri Halder. Asymptotic behaviour of Bohr’s radii for polynomials on simply connected domains. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1047-1058. doi: 10.5802/crmath.625
[1] Bohr’s power series theorem in several variables, Proc. Am. Math. Soc., Volume 125 (1997) no. 10, pp. 2975-2979 | Zbl | DOI | MR
[2] A theorem concerning power series, Proc. Lond. Math. Soc. (2), Volume 13 (1914), pp. 1-5 | DOI | MR | Zbl
[3] Harald Bohr meets Stefan Banach, Methods in Banach space theory (London Mathematical Society Lecture Note Series), Cambridge University Press, 2006 no. 337, pp. 317-339 | Zbl | DOI | MR
[4] Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., Volume 27 (1995) no. 4, pp. 359-362 | MR | DOI | Zbl
[5] Improved Bohr’s inequality for shifted disks, Results Math., Volume 76 (2021) no. 1, 14, 15 pages | Zbl | DOI | MR
[6] Asymptotics of the Bohr radius for polynomials of fixed degree, J. Math. Anal. Appl., Volume 338 (2008) no. 2, pp. 1100-1107 | DOI | MR | Zbl
[7] On the Bohr radius for simply connected plane domains, Hilbert spaces of analytic functions (CRM Proceedings & Lecture Notes), American Mathematical Society, 2010 no. 51, pp. 165-171 | DOI | MR | Zbl
[8] Bohr’s radius for polynomials in one complex variable, Comput. Methods Funct. Theory, Volume 5 (2005) no. 1, pp. 143-151 | DOI | MR | Zbl
[9] On Bohr’s inequality, Proc. Lond. Math. Soc. (3), Volume 85 (2002) no. 2, pp. 493-512 | DOI | MR | Zbl
[10] Bohr’s inequality for uniform algebras, Proc. Am. Math. Soc., Volume 132 (2004) no. 12, pp. 3577-3579 | DOI | MR | Zbl
[11] Extensions of Bohr’s inequality, Bull. Lond. Math. Soc., Volume 38 (2006) no. 6, pp. 991-999 | DOI | MR | Zbl
[12] Multivariable Bohr inequalities, Trans. Am. Math. Soc., Volume 359 (2007) no. 11, pp. 5283-5317 | Zbl | DOI | MR
[13] Bohr inequalities for free holomorphic functions on polyballs, Adv. Math., Volume 347 (2019), pp. 1002-1053 | Zbl | DOI | MR
[14] Über einen Satz von Herrn Bohr, Math. Z., Volume 26 (1927) no. 1, pp. 731-732 | Zbl | DOI | MR
[15] Sur un théorème de H. Bohr, Math. Scand., Volume 11 (1962), pp. 103-106 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy
