Given a holomorphic Lagrangian fibration of a compact hyperkähler manifold, we use the differential geometry of the special Kähler metric that exists on the base away from the discriminant locus, and show that the pullback of the tangent bundle of the base to the total space of a family of minimal rational curves admits a parallel splitting. The splitting is nontrivial when the base is not half-dimensional projective space. Combining this with results of Voisin, Hwang and Bakker–Schnell, we deduce that the base must be projective space, a result first proved by Hwang.
Étant donné une fibration lagrangienne holomorphe d’une variété hyperkählérienne compacte, nous utilisons la géométrie différentielle de la métrique kählérienne spéciale qui existe sur la base au dehors du lieu discriminant, et montrons que l’image réciproque du fibré tangent de la base par le morphisme d’évaluation d’une famille de courbes rationnelles minimales admet une décomposition parallèle. La décomposition n’est pas triviale lorsque la base n’est pas un espace projectif demi-dimensionnel. En combinant cela avec des résultats de Voisin, Hwang et Bakker–Schnell, nous en déduisons que la base doit être un espace projectif, résultat prouvé pour la première fois par Hwang.
Accepted:
Published online:
Yang Li 1; Valentino Tosatti 2
@article{CRMATH_2024__362_S1_171_0, author = {Yang Li and Valentino Tosatti}, title = {Special {K\"ahler} geometry and holomorphic {Lagrangian} fibrations}, journal = {Comptes Rendus. Math\'ematique}, pages = {171--196}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.629}, language = {en}, }
Yang Li; Valentino Tosatti. Special Kähler geometry and holomorphic Lagrangian fibrations. Comptes Rendus. Mathématique, Complex algebraic geometry, in memory of Jean-Pierre Demailly, Volume 362 (2024) no. S1, pp. 171-196. doi : 10.5802/crmath.629. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.629/
[1] A short proof of a conjecture of Matsushita (2022) (https://arxiv.org/abs/2209.00604)
[2] Développement asymptotique des fonctions obtenues par intégration sur les fibres, Invent. Math., Volume 68 (1982) no. 1, pp. 129-174 | DOI | Zbl
[3] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 755-782 | Zbl
[4] Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl
[5] Lagrangian fibrations for IHS fourfolds (2018) (https://arxiv.org/abs/1810.11011)
[6] MMP for moduli of sheaves on K3’s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., Volume 198 (2014) no. 3, pp. 505-590 | DOI | MR | Zbl
[7] A Hodge-theoretic proof of Hwang’s theorem on base manifolds of Lagrangian fibrations (2023) (https://arxiv.org/abs/2311.08977)
[8] Local projectivity of Lagrangian fibrations on hyperkähler manifolds, Manuscr. Math., Volume 164 (2021) no. 3-4, pp. 589-591 | DOI | MR | Zbl
[9] Local models of isolated singularities for affine special Kähler structures in dimension two, Int. Math. Res. Not., Volume 2020 (2020) no. 17, pp. 5215-5235 | DOI | Zbl
[10] Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) (Advanced Studies in Pure Mathematics), Volume 35, Mathematical Society of Japan, 2002, pp. 1-88 | MR | Zbl
[11] Complex analytic and differential geometry (Online book, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[12] Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys., B, Volume 460 (1996) no. 2, pp. 299-334 | DOI | MR | Zbl
[13] Special Kähler Manifolds, Commun. Math. Phys., Volume 203 (1999) no. 1, pp. 31-52 | DOI | Zbl
[14] Reflexive differential forms on singular spaces. Geometry and cohomology, J. Reine Angew. Math., Volume 697 (2014), pp. 57-89 | DOI | MR | Zbl
[15] Base manifolds for Lagrangian fibrations on hyperkähler manifolds, Int. Math. Res. Not., Volume 2014 no. 19, pp. 5483-5487 | DOI | Zbl
[16] Plurisubharmonische Funktionen in komplexen Räumen, Math. Z., Volume 65 (1956), pp. 175-194 | DOI | Zbl
[17] Collapsing of abelian fibered Calabi–Yau manifolds, Duke Math. J., Volume 162 (2013) no. 3, pp. 517-551 | MR | Zbl
[18] Gromov–Hausdorff collapsing of Calabi–Yau manifolds, Commun. Anal. Geom., Volume 24 (2016) no. 1, pp. 93-113 | DOI | MR | Zbl
[19] Geometry of twisted Kähler–Einstein metrics and collapsing, Commun. Math. Phys., Volume 380 (2020) no. 3, pp. 1401-1438 | DOI | Zbl
[20] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI
[21] Isolated singularities of affine special Kähler metrics in two dimensions, Commun. Math. Phys., Volume 340 (2015) no. 3, pp. 1231-1237 | DOI | MR | Zbl
[22] geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math., Volume 555 (2003), pp. 77-161 | MR | Zbl
[23] Lagrangian fibrations, Milan J. Math., Volume 90 (2022) no. 2, pp. 459-483 | DOI | MR | Zbl
[24] Characteristic foliation on the discriminant hypersurface of a holomorphic Lagrangian fibration, Am. J. Math., Volume 131 (2009) no. 4, pp. 981-1007 | DOI | MR | Zbl
[25] Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 1021-1027 | MR | Zbl
[26] Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers , Ann. Inst. Fourier, Volume 57 (2007) no. 3, pp. 815-823 | DOI | Numdam | MR | Zbl
[27] Base manifolds for fibrations of projective irreducible symplectic manifolds, Invent. Math., Volume 174 (2008) no. 3, pp. 625-644 | DOI | MR | Zbl
[28] Mori geometry meets Cartan geometry: varieties of minimal rational tangents, Proceedings of the International Congress of Mathematicians–Seoul 2014. Vol. 1. Plenary lectures and ceremonies, KM Kyung Moon Sa, 2014, pp. 369-394 | Zbl
[29] Lagrangian fibrations of hyperkähler fourfolds, J. Inst. Math. Jussieu, Volume 21 (2022) no. 3, pp. 921-932 | DOI | Zbl
[30] Canonical bundle formula and degenerating families of volume forms (2019) (https://arxiv.org/abs/1910.06917)
[31] Rational curves on quasi-projective surfaces, Mem. Am. Math. Soc., Volume 669 (1999), p. viii+153 | MR | Zbl
[32] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987, xi+304 pages
[33] Cone theorems and bug-eyed covers, J. Algebr. Geom., Volume 1 (1992) no. 2, pp. 293-323 | MR | Zbl
[34] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1995, viii+320 pages | Zbl
[35] A note on special Kähler manifolds, Math. Ann., Volume 313 (1999) no. 4, pp. 711-713 | MR | Zbl
[36] Lagrangian fibrations of holomorphic-symplectic varieties of -type, Algebraic and complex geometry (Springer Monographs in Mathematics), Volume 71, Springer, 2014, pp. 241-283 | DOI | MR | Zbl
[37] Holomorphic symplectic manifolds and Lagrangian fibrations, Acta Appl. Math., Volume 75 (2003) no. 1-3, pp. 117-123 | DOI | MR
[38] Higher direct images of dualizing sheaves of Lagrangian fibrations, Am. J. Math., Volume 127 (2005) no. 2, pp. 243-259 | DOI | MR | Zbl
[39] On deformations of Lagrangian fibrations, Surfaces and their moduli (Progress in Mathematics), Volume 315, Birkhäuser, 2016, pp. 237-243 | DOI | MR | Zbl
[40] On isotropic divisors on irreducible symplectic manifolds, Higher dimensional algebraic geometry–in honour of Professor Yujiro Kawamata’s sixtieth birthday (Advanced Studies in Pure Mathematics), Volume 74, Mathematical Society of Japan, 2017, pp. 291-312 | DOI | MR | Zbl
[41] On fibre space structures of a projective irreducible symplectic manifold, Topology, Volume 38 (1999) no. 1, pp. 79-83 Addendum in ibid. 40 (2001), no. 2, pp. 431–432 | DOI | MR | Zbl
[42] A numerical criterion for uniruledness, Ann. Math., Volume 124 (1986) no. 1, pp. 65-69 | DOI | MR | Zbl
[43] The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differ. Geom., Volume 27 (1988) no. 2, pp. 179-214 | Zbl
[44] Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl
[45] Dual fibration of a projective Lagrangian fibration (2005) (Unpublished preprint)
[46] Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Int. J. Math., Volume 13 (2002) no. 2, pp. 125-135 | DOI | MR | Zbl
[47] Analysis of several complex variables, Iwanami Series in Modern Mathematics. Translations of Mathematical Monographs, 211, American Mathematical Society, 2002, xvii+121 pages | DOI | Zbl
[48] Lagrangian fibrations on symplectic fourfolds, J. Reine Angew. Math., Volume 746 (2019), pp. 117-147 | MR | Zbl
[49] Variation of Hodge structure: the singularities of the period mapping, Invent. Math., Volume 22 (1973), pp. 211-319 | DOI | MR | Zbl
[50] Varieties with ample tangent sheaves, Manuscr. Math., Volume 157 (2018) no. 1-2, pp. 257-261 | DOI | MR | Zbl
[51] Canonical measures and Kähler–Ricci flow, Flow, Volume 25 (2012) no. 2, pp. 303-353 | Zbl
[52] Topology of Lagrangian fibrations and Hodge theory of hyper-Kähler manifolds. With Appendix B by Claire Voisin, Duke Math. J., Volume 171 (2022) no. 1, pp. 209-241 | Zbl
[53] Compact Kähler manifolds of positive bisectional curvature, Invent. Math., Volume 59 (1980) no. 2, pp. 189-204 | Zbl
[54] Simple connectedness of weak Fano varieties, J. Algebr. Geom., Volume 9 (2000) no. 2, pp. 403-407 | MR | Zbl
[55] Asymptotic expansions of fiber integrals over higher-dimensional bases, J. Reine Angew. Math., Volume 773 (2021), pp. 67-128 | DOI | MR | Zbl
[56] Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., Volume 84 (2010) no. 2, pp. 427-453 | Zbl
[57] Finite time collapsing of the Kähler-Ricci flow on threefolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 1, pp. 105-118 | Zbl
[58] Collapsing hyperkähler manifolds, Ann. Sci. Éc. Norm. Supér., Volume 52 (2020) no. 3, pp. 751-786 | DOI | Zbl
[59] On a conjecture of Matsushita, Int. Math. Res. Not., Volume 2016 (2016) no. 10, pp. 3111-3123 | MR | Zbl
[60] Torsion points of sections of Lagrangian torus fibrations and the Chow ring of hyper-Kähler manifolds, Geometry of moduli (Abel Symposia), Volume 14, Springer, 2018, pp. 295-326 | DOI | Zbl
[61] Strong rational connectedness of surfaces, J. Reine Angew. Math., Volume 665 (2012), pp. 189-205 | MR | Zbl
[62] On the boundary behavior of the curvature of -metrics (2010) (https://arxiv.org/abs/1007.2836)
[63] Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface, Development of moduli theory–Kyoto 2013 (Advanced Studies in Pure Mathematics), Volume 69, Mathematical Society of Japan, 2013, pp. 473-537 | Zbl
Cited by Sources:
Comments - Policy