The representation of numbers in rational base $p/q$ was introduced in 2008 by Akiyama, Frougny & Sakarovitch, with a special focus on the case $p/q=3/2$. Unnoticed since then, natural questions related to representations in that specific base turn out to intimately involve the Collatz $3x+1$ function. Our purpose in this note is to expose these links and motivate further research into them.
La représentation des nombres dans la base rationnelle $p/q$ a été introduite en 2008 par Akiyama, Frougny & Sakarovitch, avec un accent particulier sur le cas $p/q=3/2$. Des questions naturelles liées aux représentations dans cette base spécifique, passées inaperçues jusqu’ici, s’avèrent impliquer intimement la fonction de Collatz $3x+1$. Le but de cette note est d’exposer ces liens et de motiver des recherches plus approfondies sur ceux-ci.
Revised:
Accepted:
Published online:
Keywords: Collatz conjecture, iteration, numeration, odometer
Mots-clés : Conjecture de Collatz, itération, numération, odomètre
Shalom Eliahou 1, 2; Jean-Louis Verger-Gaugry 3

@article{CRMATH_2025__363_G4_329_0, author = {Shalom Eliahou and Jean-Louis Verger-Gaugry}, title = {The number system in rational base~$3/2$ and the $3x+1$ problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {329--336}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.662}, language = {en}, }
TY - JOUR AU - Shalom Eliahou AU - Jean-Louis Verger-Gaugry TI - The number system in rational base $3/2$ and the $3x+1$ problem JO - Comptes Rendus. Mathématique PY - 2025 SP - 329 EP - 336 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.662 LA - en ID - CRMATH_2025__363_G4_329_0 ER -
Shalom Eliahou; Jean-Louis Verger-Gaugry. The number system in rational base $3/2$ and the $3x+1$ problem. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 329-336. doi : 10.5802/crmath.662. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.662/
[1] The ultimate challenge: the problem (Jeffrey C. Lagarias, ed.), American Mathematical Society, 2010, xiv+344 pages | DOI | MR | Zbl
[2] Powers of rationals modulo 1 and rational base number systems, Isr. J. Math., Volume 168 (2008), pp. 53-91 | DOI | MR | Zbl
[3] Convergence verification of the Collatz problem, J. Supercomput., Volume 77 (2021), pp. 2681-2688 | DOI
[4] The problem: new lower bounds on nontrivial cycle lengths, Discrete Math., Volume 118 (1993) no. 1-3, pp. 45-56 | DOI | MR | Zbl
[5] Patterns in rational base number systems, J. Fourier Anal. Appl., Volume 19 (2013) no. 2, pp. 225-250 | DOI | MR | Zbl
[6] Almost all orbits of the Collatz map attain almost bounded values, Forum Math. Pi, Volume 10 (2022), E12, 56 pages | DOI | MR | Zbl
Cited by Sources:
Comments - Policy