Comptes Rendus
Research article - Dynamical systems
Approximation and extension of Hermitian metrics on holomorphic vector bundles over Stein manifolds
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1707-1715.

We show that a singular Hermitian metric on a holomorphic vector bundle over a Stein manifold which is negative in the sense of Griffiths (resp. Nakano) can be approximated by a sequence of smooth Hermitian metrics with the same curvature negativity. We also show that a smooth Hermitian metric on a holomorphic vector bundle over a Stein manifold restricted to a submanifold which is negative in the sense of Griffiths (resp. Nakano) can be extended to the whole bundle with the same curvature negativity.

Nous montrons qu’une métrique hermitienne singulière sur un fibré vectoriel holomorphe sur une variété de Stein qui est négative au sens de Griffiths (resp. Nakano) peut ê tre approximé par une séquence de métriques hermitiennes lisses avec la même négativité de courbure. Nous montrons également qu’une métrique hermitienne lisse sur un fibré vectoriel holomorphe sur une variété de Stein restreinte à une sous-variété ce qui est négatif au sens de Griffiths (resp. Nakano) peut être étendu à l’ensemble du faisceau avec la même négativité de courbure.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.675
Classification: 32Q28
Keywords: Approximation, extension, singular hermitian metric, Griffiths negative, Nakano negative
Mots-clés : Approximation, extension, métrique hermitienne singulière, négativité de Griffiths, négativité de Nakano

Fusheng Deng 1; Jiafu Ning 2; Zhiwei Wang 3; Xiangyu Zhou 1, 4

1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
2 School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, P. R. China
3 School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, P. R. China
4 Institute of Mathematics, Academy of Mathematics and Systems Sciences and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences Beijing, 100190, P. R. China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G12_1707_0,
     author = {Fusheng Deng and Jiafu Ning and Zhiwei Wang and Xiangyu Zhou},
     title = {Approximation and extension of {Hermitian} metrics on holomorphic vector bundles over {Stein} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1707--1715},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.675},
     zbl = {07949980},
     language = {en},
}
TY  - JOUR
AU  - Fusheng Deng
AU  - Jiafu Ning
AU  - Zhiwei Wang
AU  - Xiangyu Zhou
TI  - Approximation and extension of Hermitian metrics on holomorphic vector bundles over Stein manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1707
EP  - 1715
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.675
LA  - en
ID  - CRMATH_2024__362_G12_1707_0
ER  - 
%0 Journal Article
%A Fusheng Deng
%A Jiafu Ning
%A Zhiwei Wang
%A Xiangyu Zhou
%T Approximation and extension of Hermitian metrics on holomorphic vector bundles over Stein manifolds
%J Comptes Rendus. Mathématique
%D 2024
%P 1707-1715
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.675
%G en
%F CRMATH_2024__362_G12_1707_0
Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. Approximation and extension of Hermitian metrics on holomorphic vector bundles over Stein manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1707-1715. doi : 10.5802/crmath.675. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.675/

[1] Bo Berndtsson Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl

[2] Bo Berndtsson; Mihai Păun Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | MR | Zbl

[3] Jean-Pierre Demailly Complex analytic and differential geometry (2012) (http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[4] John Erik Fornæss; Raghavan Narasimhan The Levi problem on complex spaces with singularities, Math. Ann., Volume 248 (1980) no. 1, pp. 47-72 | DOI | MR | Zbl

[5] Franc Forstnerič Stein manifolds and holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 56, Springer, 2011, xii+489 pages (The homotopy principle in complex analysis) | DOI | MR | Zbl

[6] Hossein Raufi Singular hermitian metrics on holomorphic vector bundles, Ark. Mat., Volume 53 (2015) no. 2, pp. 359-382 | DOI | MR | Zbl

[7] S. Sadullaev Extensions of plurisubharmonic functions from a submanifold, Dokl. Akad. Nauk UzSSR, Volume 1982 (1982) no. 5, pp. 3-4 | MR | Zbl

[8] Yum Tong Siu Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976) no. 1, pp. 89-100 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy