We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps.
Nous commençons l’étude de la géométrie à petite échelle des espaces d’opérateurs. Les auteurs ont précédemment montré qu’une application entre espaces d’opérateurs qui est complètement grossière (c’est-à-dire que la séquence de ses amplifications est équi-grossière) doit être -linéaire. Nous obtenons une généralisation du résultat susmentionné aux applications complètement grossières définies sur la boule unité d’un espace d’opérateurs. En assouplissant la condition à une petite échelle, nous prouvons qu’il existe de nombreux exemples non linéaires d’applications qui sont complètement Lipschitz à petite échelle. Nous définissons un paramètre géométrique pour les espaces d’opérateurs hilbertiens homogènes qui impose des restrictions sur l’existence de telles applications.
Revised:
Accepted:
Published online:
Keywords: Operator spaces, Coarse geometry, Embeddings
Mots-clés : Espaces d’opérateurs, Géométrie grossière, Injections
Bruno M. Braga 1; Javier Alejandro Chávez-Domínguez 2
@article{CRMATH_2024__362_G13_1893_0, author = {Bruno M. Braga and Javier Alejandro Ch\'avez-Dom{\'\i}nguez}, title = {On the small scale nonlinear theory of operator spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1893--1914}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.678}, language = {en}, }
TY - JOUR AU - Bruno M. Braga AU - Javier Alejandro Chávez-Domínguez TI - On the small scale nonlinear theory of operator spaces JO - Comptes Rendus. Mathématique PY - 2024 SP - 1893 EP - 1914 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.678 LA - en ID - CRMATH_2024__362_G13_1893_0 ER -
Bruno M. Braga; Javier Alejandro Chávez-Domínguez. On the small scale nonlinear theory of operator spaces. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1893-1914. doi : 10.5802/crmath.678. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.678/
[1] Completely coarse maps are -linear, Proc. Am. Math. Soc., Volume 149 (2021) no. 3, pp. 1139-1149 | DOI | Zbl
[2] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces, Math. Ann., Volume 388 (2024) no. 1, pp. 1053-1090 | DOI | MR | Zbl
[3] Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, 30, Clarendon Press, 2004, x+387 pages (Oxford Science Publications) | DOI | MR | Zbl
[4] The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl
[5] Coarse geometry of operator spaces and complete isomorphic embeddings into and -sums of operator spaces, Math. Z., Volume 304 (2023) no. 3, 52, 19 pages | DOI | MR | Zbl
[6] On weaker notions of nonlinear embeddings between Banach spaces, J. Funct. Anal., Volume 274 (2018) no. 11, pp. 3149-3169 | DOI | MR | Zbl
[7] Towards a theory of coarse geometry of operator spaces, Isr. J. Math., Volume 259 (2024) no. 2, pp. 527-558 | DOI | MR | Zbl
[8] Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Isr. J. Math., Volume 57 (1987) no. 2, pp. 137-224 | DOI | MR | Zbl
[9] Completely bounded multilinear maps and -algebraic cohomology, Invent. Math., Volume 90 (1987) no. 2, pp. 279-296 | DOI | MR | Zbl
[10] On the complete boundedness of the Schur block product, Proc. Am. Math. Soc., Volume 147 (2019) no. 2, pp. 523-532 | DOI | MR | Zbl
[11] Completely bounded polynomials between operator spaces, Math. Scand., Volume 107 (2010) no. 2, pp. 249-266 | DOI | MR | Zbl
[12] Polynomials in operator space theory, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5493-5525 | DOI | MR | Zbl
[13] Integral mappings and the principle of local reflexivity for noncommutative -spaces, Ann. Math., Volume 151 (2000) no. 1, pp. 59-92 | DOI | MR | Zbl
[14] Operator spaces, London Mathematical Society Monographs. New Series, 23, Clarendon Press, 2000, xvi+363 pages | MR | Zbl
[15] Lipschitz-free Banach spaces, Stud. Math., Volume 159 (2003) no. 1, pp. 121-141 (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday) | DOI | MR | Zbl
[16] Exactness and uniform embeddability of discrete groups, J. Lond. Math. Soc., Volume 70 (2004) no. 3, pp. 703-718 | DOI | MR | Zbl
[17] Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | DOI | MR | Zbl
[18] Banach spaces determined by their uniform structures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 430-470 | DOI | MR | Zbl
[19] Factorization Theory for Spaces of Operators, 1996 (Habilitation Thesis, Kiel)
[20] The nonlinear geometry of Banach spaces, Rev. Mat. Complut., Volume 21 (2008) no. 1, pp. 7-60 | DOI | MR | Zbl
[21] Type and cotype of operator spaces, Stud. Math., Volume 185 (2008) no. 3, pp. 219-247 | DOI | MR | Zbl
[22] Weak type and weak cotype of operator spaces, Houston J. Math., Volume 35 (2009) no. 4, pp. 1171-1201 | MR | Zbl
[23] Metric cotype, Ann. Math., Volume 168 (2008) no. 1, pp. 247-298 | DOI | MR | Zbl
[24] Extension properties for the space of compact operators, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 251-308 | DOI | MR | Zbl
[25] Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, 2003, viii+478 pages | DOI | MR | Zbl
[26] Dvoretzky’s theorem for operator spaces, Houston J. Math., Volume 22 (1996) no. 2, pp. 399-416 | MR | Zbl
[27] Non-commutative vector valued -spaces and completely -summing maps, Astérisque, Société Mathématique de France, 1998 no. 247, vi+131 pages | Numdam | MR | Zbl
[28] Equivariant geometry of Banach spaces and topological groups, Forum Math. Sigma, Volume 5 (2017), e22, 62 pages | DOI | MR | Zbl
[29] A characterization of Banach spaces containing , Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 2411-2413 | DOI | MR | Zbl
[30] Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., Volume 140 (1911), pp. 1-28 | DOI | MR | Zbl
[31] An elementary proof of the restricted invertibility theorem, Isr. J. Math., Volume 190 (2012), pp. 83-91 | DOI | MR | Zbl
[32] Representation and geometry of operator spaces, Ph. D. Thesis, University of Houston (1995)
[33] Completely bounded Banach-Mazur distance, Proc. Edinb. Math. Soc., II. Ser., Volume 40 (1997) no. 2, pp. 247-260 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy