A new proof of the sharp symmetrized form of Talagrand’s transport-entropy inequality is given. Compared to stochastic proofs of other Gaussian functional inequalities, the new idea here is a certain coupling induced by time-reversed martingale representations.
Nous donnons une nouvelle preuve de la version symétrisée de l’inégalité de transport-entropie de Talagrand avec constante optimale. En comparaison avec d’autres preuves stochastiques d’inégalités fonctionnelles gaussiennes, l’élément nouveau ici est l’utilisation d’un couplage induit par un retournement du temps sur des représentations de martingales.
Revised:
Accepted:
Published online:
Keywords: Transport inequalities, Gaussian inequalities, Blaschke–Santaló inequality, Martingale representations
Mots-clés : Inégalités de transport, inégalités Gaussiennes, inégalité de Blaschke–Santaló, représentations de martingales
Thomas A. Courtade 1; Max Fathi 2, 3, 4; Dan Mikulincer 5

@article{CRMATH_2024__362_G12_1779_0, author = {Thomas A. Courtade and Max Fathi and Dan Mikulincer}, title = {Stochastic proof of the sharp symmetrized {Talagrand} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {1779--1784}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.681}, language = {en}, }
TY - JOUR AU - Thomas A. Courtade AU - Max Fathi AU - Dan Mikulincer TI - Stochastic proof of the sharp symmetrized Talagrand inequality JO - Comptes Rendus. Mathématique PY - 2024 SP - 1779 EP - 1784 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.681 LA - en ID - CRMATH_2024__362_G12_1779_0 ER -
Thomas A. Courtade; Max Fathi; Dan Mikulincer. Stochastic proof of the sharp symmetrized Talagrand inequality. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1779-1784. doi : 10.5802/crmath.681. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.681/
[1] The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika, Volume 51 (2004) no. 1-2, pp. 33-48 | DOI | MR | Zbl
[2] Equality cases in the Anantharam–Jog–Nair inequality (2022) (https://arxiv.org/abs/2206.11809)
[3] Isometric problems in and sections of convex sets, Ph. D. Thesis, University of Cambridge (1986)
[4] Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., Volume 163 (1999) no. 1, pp. 1-28 | DOI | MR | Zbl
[5] Diffusion equations and geometric inequalities, Potential Anal., Volume 12 (2000) no. 1, pp. 49-71 | DOI | MR | Zbl
[6] Duality and Heat flow (2024) (https://arxiv.org/abs/2403.15357)
[7] Stability of the Shannon–Stam inequality via the Föllmer process, Probab. Theory Relat. Fields, Volume 177 (2020) no. 3-4, pp. 891-922 | DOI | MR | Zbl
[8] A sharp symmetrized form of Talagrand’s transport-entropy inequality for the Gaussian measure, Electron. Commun. Probab., Volume 23 (2018), 81, 9 pages | DOI | MR | Zbl
[9] Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395 | DOI | MR | Zbl
[10] Transport inequalities. A survey, Markov Process. Relat. Fields, Volume 16 (2010) no. 4, pp. 635-736 | MR | Zbl
[11] Characterization of Talagrand’s like transportation-cost inequalities on the real line, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 400-425 | DOI | MR | Zbl
[12] Blaschke–Santaló inequality for many functions and geodesic barycenters of measures, Adv. Math., Volume 396 (2022), 108110, 44 pages | DOI | MR | Zbl
[13] A direct proof of the functional Santaló inequality, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 1-2, pp. 55-58 | DOI | Numdam | MR | Zbl
[14] Partitions and functional Santaló inequalities, Arch. Math., Volume 92 (2009) no. 1, pp. 89-94 | DOI | MR | Zbl
[15] Representation formula for the entropy and functional inequalities, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 49 (2013) no. 3, pp. 885-899 | DOI | Numdam | MR | Zbl
[16] Universality of High-Dimensional Systems, Ph. D. Thesis, Weizmann Institute of Science (2021)
[17] On the Blaschke-Santaló inequality, Arch. Math., Volume 55 (1990) no. 1, pp. 82-93 | DOI | MR | Zbl
[18] The functional volume product under heat flow (2023) (https://arxiv.org/abs/2401.00427)
[19] Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981 (Publ. Math. Univ. Pierre et Marie Curie), Volume 46, Univ. Paris VI, 1981 (Exp. No. 11, 25 p.) | MR | Zbl
[20] An affine invariant for convex bodies of -dimensional space, Port. Math., Volume 8 (1949), pp. 155-161 | MR | Zbl
[21] Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 587-600 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy