Comptes Rendus
Research article - Probability theory
Stochastic proof of the sharp symmetrized Talagrand inequality
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1779-1784.

A new proof of the sharp symmetrized form of Talagrand’s transport-entropy inequality is given. Compared to stochastic proofs of other Gaussian functional inequalities, the new idea here is a certain coupling induced by time-reversed martingale representations.

Nous donnons une nouvelle preuve de la version symétrisée de l’inégalité de transport-entropie de Talagrand avec constante optimale. En comparaison avec d’autres preuves stochastiques d’inégalités fonctionnelles gaussiennes, l’élément nouveau ici est l’utilisation d’un couplage induit par un retournement du temps sur des représentations de martingales.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.681
Classification: 60H30, 39B62, 52A40
Keywords: Transport inequalities, Gaussian inequalities, Blaschke–Santaló inequality, Martingale representations
Mots-clés : Inégalités de transport, inégalités Gaussiennes, inégalité de Blaschke–Santaló, représentations de martingales

Thomas A. Courtade 1; Max Fathi 2, 3, 4; Dan Mikulincer 5

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 USA
2 Université Paris Cité and Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions and Laboratoire de Probabilités, Statistique et Modélisation, F-75013 Paris, France
3 DMA, École normale supérieure, Université PSL, CNRS, 75005 Paris, France
4 Institut Universitaire de France
5 Department of Mathematics, MIT, Cambridge, MA 02139 USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G12_1779_0,
     author = {Thomas A. Courtade and Max Fathi and Dan Mikulincer},
     title = {Stochastic proof of the sharp symmetrized {Talagrand} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1779--1784},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.681},
     language = {en},
}
TY  - JOUR
AU  - Thomas A. Courtade
AU  - Max Fathi
AU  - Dan Mikulincer
TI  - Stochastic proof of the sharp symmetrized Talagrand inequality
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1779
EP  - 1784
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.681
LA  - en
ID  - CRMATH_2024__362_G12_1779_0
ER  - 
%0 Journal Article
%A Thomas A. Courtade
%A Max Fathi
%A Dan Mikulincer
%T Stochastic proof of the sharp symmetrized Talagrand inequality
%J Comptes Rendus. Mathématique
%D 2024
%P 1779-1784
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.681
%G en
%F CRMATH_2024__362_G12_1779_0
Thomas A. Courtade; Max Fathi; Dan Mikulincer. Stochastic proof of the sharp symmetrized Talagrand inequality. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1779-1784. doi : 10.5802/crmath.681. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.681/

[1] S. Artstein-Avidan; B. Klartag; V. Milman The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika, Volume 51 (2004) no. 1-2, pp. 33-48 | DOI | MR | Zbl

[2] Efe Aras; Thomas A. Courtade; Albert Zhang Equality cases in the Anantharam–Jog–Nair inequality (2022) (https://arxiv.org/abs/2206.11809)

[3] Keith M. Ball Isometric problems in p and sections of convex sets, Ph. D. Thesis, University of Cambridge (1986)

[4] S. G. Bobkov; F. Götze Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., Volume 163 (1999) no. 1, pp. 1-28 | DOI | MR | Zbl

[5] Christer Borell Diffusion equations and geometric inequalities, Potential Anal., Volume 12 (2000) no. 1, pp. 49-71 | DOI | MR | Zbl

[6] Dario Cordero-Erausquin; Nathael Gozlan; Shohei Nakamura; Hiroshi Tsuji Duality and Heat flow (2024) (https://arxiv.org/abs/2403.15357)

[7] Ronen Eldan; Dan Mikulincer Stability of the Shannon–Stam inequality via the Föllmer process, Probab. Theory Relat. Fields, Volume 177 (2020) no. 3-4, pp. 891-922 | DOI | MR | Zbl

[8] Max Fathi A sharp symmetrized form of Talagrand’s transport-entropy inequality for the Gaussian measure, Electron. Commun. Probab., Volume 23 (2018), 81, 9 pages | DOI | MR | Zbl

[9] M. Fradelizi; M. Meyer Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395 | DOI | MR | Zbl

[10] Nathael Gozlan; C. Léonard Transport inequalities. A survey, Markov Process. Relat. Fields, Volume 16 (2010) no. 4, pp. 635-736 | MR | Zbl

[11] Nathael Gozlan Characterization of Talagrand’s like transportation-cost inequalities on the real line, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 400-425 | DOI | MR | Zbl

[12] Alexander V. Kolesnikov; Elisabeth M. Werner Blaschke–Santaló inequality for many functions and geodesic barycenters of measures, Adv. Math., Volume 396 (2022), 108110, 44 pages | DOI | MR | Zbl

[13] Joseph Lehec A direct proof of the functional Santaló inequality, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 1-2, pp. 55-58 | DOI | Numdam | MR | Zbl

[14] Joseph Lehec Partitions and functional Santaló inequalities, Arch. Math., Volume 92 (2009) no. 1, pp. 89-94 | DOI | MR | Zbl

[15] Joseph Lehec Representation formula for the entropy and functional inequalities, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 49 (2013) no. 3, pp. 885-899 | DOI | Numdam | MR | Zbl

[16] Dan Mikulincer Universality of High-Dimensional Systems, Ph. D. Thesis, Weizmann Institute of Science (2021)

[17] Mathieu Meyer; Alain Pajor On the Blaschke-Santaló inequality, Arch. Math., Volume 55 (1990) no. 1, pp. 82-93 | DOI | MR | Zbl

[18] Shohei Nakamura; Hiroshi Tsuji The functional volume product under heat flow (2023) (https://arxiv.org/abs/2401.00427)

[19] J. Saint-Raymond Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981 (Publ. Math. Univ. Pierre et Marie Curie), Volume 46, Univ. Paris VI, 1981 (Exp. No. 11, 25 p.) | MR | Zbl

[20] L. A. Santaló An affine invariant for convex bodies of n-dimensional space, Port. Math., Volume 8 (1949), pp. 155-161 | MR | Zbl

[21] M. Talagrand Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 587-600 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy