Comptes Rendus
Research article - Complex analysis and geometry
On quasiconformal extension of harmonic mappings with nonzero pole
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 445-454.

Let $\Sigma _H^k(p)$ be the class of sense-preserving univalent harmonic mappings defined on the open unit disk $\mathbb{D}$ of the complex plane with a simple pole at $z=p \in (0,1)$ that have $k$-quasiconformal extensions ($0\le k<1$) to the extended complex plane. We first derive a sufficient condition for harmonic mappings defined on $\mathbb{D}$ with pole at $z=p\in (0,1)$ to belong in the class $\Sigma _H^k(p)$. As a consequence of this, we derive a convolution result involving functions in $\smash{\Sigma _H^{k_i}(p)}$, $0\le k_i<1$ for $i=1,2$. We also consider harmonic mappings with a nonzero pole defined on a linearly connected domain $\Omega \subset \mathbb{D}$ and prove criteria for univalence and quasiconformal extensions for such mappings.

Soit $\Sigma _H^k(p)$ la classe des applications harmoniques injectives préservant l’orientation, définies sur le disque unité ouvert $\mathbb{D}$ du plan complexe ayant un pôle simple en $z=p \in (0,1)$ et qui ont une extension $k$-quasiconforme ($0\le k<1$) au plan complexe étendu. Nous décrivons d’abord une condition suffisante pour qu’une application harmonique appartienne à la classe $\Sigma _H^k(p)$. En conséquence, nous obtenons un résultat de convolution impliquant des applications dans $\smash{\Sigma _H^{k_i}(p)}$, $0\le k_i<1$ pour $i=1,2$. Nous considérons également des applications harmoniques avec un pôle non nul définies sur un domaine linéairement connecté $\Omega \subset \mathbb{D}$ et décrivons des critères d’univalence et d’extensions quasiconformes pour de telles applications.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.686
Classification: 31A05, 30C62, 30C55
Keywords: Quasiconformal mappings, harmonic mappings, linearly connected domain, quasidisk
Mots-clés : Applications quasiconformes, applications harmoniques, domaine linéairement connecté, quasidisque

Bappaditya Bhowmik 1; Goutam Satpati 1

1 Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G5_445_0,
     author = {Bappaditya Bhowmik and Goutam Satpati},
     title = {On quasiconformal extension of harmonic mappings with nonzero pole},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {445--454},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.686},
     language = {en},
}
TY  - JOUR
AU  - Bappaditya Bhowmik
AU  - Goutam Satpati
TI  - On quasiconformal extension of harmonic mappings with nonzero pole
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 445
EP  - 454
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.686
LA  - en
ID  - CRMATH_2025__363_G5_445_0
ER  - 
%0 Journal Article
%A Bappaditya Bhowmik
%A Goutam Satpati
%T On quasiconformal extension of harmonic mappings with nonzero pole
%J Comptes Rendus. Mathématique
%D 2025
%P 445-454
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.686
%G en
%F CRMATH_2025__363_G5_445_0
Bappaditya Bhowmik; Goutam Satpati. On quasiconformal extension of harmonic mappings with nonzero pole. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 445-454. doi : 10.5802/crmath.686. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.686/

[1] Lars V. Ahlfors Quasiconformal reflections, Acta Math., Volume 109 (1963), pp. 291-301 | DOI | MR | Zbl

[2] Bappaditya Bhowmik; Goutam Satpati Loewner chain and quasiconformal extension of some classes of univalent functions, Complex Var. Elliptic Equ., Volume 65 (2020) no. 4, pp. 544-557 | DOI | MR | Zbl

[3] Bappaditya Bhowmik; Goutam Satpati An area theorem for harmonic mappings with nonzero pole having quasiconformal extensions, Proc. Am. Math. Soc., Volume 152 (2024) no. 9, pp. 3881-3891 | DOI | MR | Zbl

[4] Bappaditya Bhowmik; Goutam Satpati; Toshiyuki Sugawa Quasiconformal extension of meromorphic functions with nonzero pole, Proc. Am. Math. Soc., Volume 144 (2016) no. 6, pp. 2593-2601 | DOI | MR

[5] Peter Duren Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, 2004, xii+212 pages | DOI | MR

[6] Walter Hengartner; Glenn Edward Schober Univalent harmonic functions, Trans. Am. Math. Soc., Volume 299 (1987) no. 1, pp. 1-31 | DOI | MR

[7] Rodrigo Hernández; María J. Martín Quasiconformal extension of harmonic mappings in the plane, Ann. Acad. Sci. Fenn., Math., Volume 38 (2013) no. 2, pp. 617-630 | DOI | MR | Zbl

[8] Ikkei Hotta Explicit quasiconformal extensions and Löwner chains, Proc. Japan Acad., Ser. A, Volume 85 (2009) no. 8, pp. 108-111 | DOI | MR | Zbl

[9] Jan G. Krzyż Convolution and quasiconformal extension, Comment. Math. Helv., Volume 51 (1976) no. 1, pp. 99-104 | DOI | MR | Zbl

[10] Olli E. Lehto Schlicht functions with a quasiconformal extension, Ann. Acad. Sci. Fenn., Ser. A I, Volume 500 (1971), 10 pages | MR | Zbl

[11] Olli E. Lehto Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, 109, Springer, 1987, xii+257 pages | DOI | MR

[12] Olli E. Lehto; Kaarlo Ilmari Virtanen Quasiconformal mappings in the plane, Grundlehren der Mathematischen Wissenschaften, 126, Springer, 1973, viii+258 pages | DOI | MR

[13] Miodrag Mateljević Dirichlet’s principle, distortion and related problems for harmonic mappings, Publ. Inst. Math., Nouv. Sér., Volume 75(89) (2004), pp. 147-171 | DOI | MR | Zbl

[14] Christian Pommerenke Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer, 1992, x+300 pages | DOI | MR

[15] Toshiyuki Sugawa Quasiconformal extension of strongly spirallike functions, Comput. Methods Funct. Theory, Volume 12 (2012) no. 1, pp. 19-30 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy