Let $f$ be a holomorphic self-map of the unit disc. We show that if $\log (1-\vert f(z)\vert )$ is integrable on a sub-arc of the unit circle, $I$, then the set of points where the function $f$ has finite Carathéodory angular derivative on $I$ is a countable union of Beurling–Carleson sets of finite entropy. Conversely, given a countable union of Beurling–Carleson sets, $E$, we construct a holomorphic self-map of the unit disc, $f$, such that the set of points where the $f$ function has finite Carathéodory angular derivative is equal to $E$ and $\log (1-\vert f(z)\vert )$ is integrable on the unit circle. Our main technical tools are the Aleksandrov disintegration Theorem and a characterization of countable unions of Beurling–Carleson sets due to Makarov and Nikolski.
Soit $f$ une auto-application holomorphe du disque unitaire. Nous montrons que si $\log (1-\vert f(z)\vert )$ est intégrable sur un sous-arc du cercle unitaire, $I$, alors l’ensemble des dérivées angulaires de Carathéodory de $f$ sur $I$ est une union dénombrable d’ensembles de Beurling–Carleson d’entropie finie. Inversement, étant donné une union dénombrable d’ensembles de Beurling–Carleson, $E$, nous construisons une auto-application holomorphe du disque unitaire, telle que son ensemble de dérivées angulaires de Carathéodory est égal à $E$ et que $\log (1-\vert f(z)\vert )$ est intégrable sur le cercle unitaire. Nos principaux outils techniques sont le théorème de désintégration d’Aleksandrov et une caractérisation des unions dénombrables d’ensembles de Beurling–Carleson due à Makarov et Nikolski.
Revised:
Accepted:
Published online:
Keywords: Angular derivative, holomorphic map, Beurling–Carleson sets
Mots-clés : Dérivée angulaire, carte holomorphe, ensembles de Beurling–Carleson
Alex Bergman 1

@article{CRMATH_2025__363_G1_29_0, author = {Alex Bergman}, title = {A {Sharp} {Entropy} {Condition} for the {Density} of {Angular} {Derivatives}}, journal = {Comptes Rendus. Math\'ematique}, pages = {29--33}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.695}, language = {en}, }
Alex Bergman. A Sharp Entropy Condition for the Density of Angular Derivatives. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 29-33. doi : 10.5802/crmath.695. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.695/
[1] Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat., Volume 22 (1987) no. 5, pp. 490-503 | MR
[2] Harmonic measure, New Mathematical Monographs, 2, Cambridge University Press, 2005, xvi+571 pages | DOI | MR
[3] The unitary point spectrum of almost unitary operators, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 126 (1983), pp. 143-149 | MR | Zbl
[4] Aleksandrov-Clark measures, Recent advances in operator-related function theory (Contemporary Mathematics), Volume 393, American Mathematical Society, 2006, pp. 1-14 | DOI | MR | Zbl
[5] An elementary introduction to Clark measures, Topics in complex analysis and operator theory, Universidad de Málaga, 2007, pp. 85-136 | MR | Zbl
[6] Sub-Hardy Hilbert spaces in the unit disk, The University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons, 1994, xvi+95 pages | MR
[7] Spectral analysis of rank one perturbations and applications, Mathematical quantum theory II. Schrödinger operators (Vancouver, BC, 1993) (CRM Proceedings & Lecture Notes), Volume 8, American Mathematical Society, 1995, pp. 109-149 | DOI | MR | Zbl
[8] Ideals in Rings of Analytic Functions with Smooth Boundary Values, Can. J. Math., Volume 22 (1970) no. 6, pp. 1266-1283 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy